References of "Hurtmans, D"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAcetylene (C2H2) and hydrogen cyanide (HCN) from IASI satellite observations: global distributions, validation, and comparison with model
Duflot, V.; Wespes, C.; Clarisse, L. et al

in Atmospheric Chemistry & Physics Discussions (2015), 15(10), 14357--14401

We present global distributions of C2H2 and HCN total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI). These distributions are obtained with a fast method allowing to retrieve ... [more ▼]

We present global distributions of C2H2 and HCN total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI). These distributions are obtained with a fast method allowing to retrieve C2H2 abundance globally with a 5% precision and HCN abundance in the tropical (subtropical) belt with a 10% (30%) precision. IASI data are compared for validation purposes with ground-based Fourier Transform Infrared (FTIR) spectrometer measurements at four selected stations. We show that there is an overall agreement between the ground-based and space measurements. Global C2H2 and subtropical HCN abundances retrieved from IASI spectra show the expected seasonality linked to variations in the anthropogenic emissions and seasonal biomass burning activity, as well as exceptional events, and are in good agreement with previous spaceborne studies. IASI measurements are also compared to the distributions from the Model for Ozone and Related Chemical Tracers, version 4 (MOZART- 4). Seasonal cycles observed from satellite data are reasonably well reproduced by the model. However, the model seems to overestimate (underestimate) anthropogenic (biomass burning) emissions and a negative global mean bias of 1% (16 %) of the model relative to the satellite observations was found for C2H2 (HCN). [less ▲]

Detailed reference viewed: 13 (1 ULg)
Full Text
Peer Reviewed
See detailMeasurements of hydrogen cyanide (HCN) and acetylene (C2H2) from the Infrared Atmospheric Sounding Interferometer (IASI)
Duflot, V.; Hurtmans, D.; Clarisse, L. et al

in Atmospheric Measurement Techniques (2013), 6

Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric ... [more ▼]

Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing, we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S, 55° E) and Jungfraujoch (46° N, 8° E) in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI). A first order comparison with local ground-based Fourier transform InfraRed (FTIR) measurements has been carried out allowing tests of seasonal consistency which is reasonably captured, except for HCN at Jungfraujoch. The IASI data shows a greater tendency to high C2H2 values. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values. [less ▲]

Detailed reference viewed: 98 (5 ULg)
Full Text
Peer Reviewed
See detailValidation of IASI FORLI carbon monoxide retrievals using FTIR data from NDACC
Kerzenmacher, T; Dils, B; Kumps, N et al

in Atmospheric Measurement Techniques (2012), 5

Carbon monoxide (CO) is retrieved daily and globally from space-borne IASI radiance spectra using the Fast Optimal Retrievals on Layers for IASI (FORLI) software developed at the Université Libre de ... [more ▼]

Carbon monoxide (CO) is retrieved daily and globally from space-borne IASI radiance spectra using the Fast Optimal Retrievals on Layers for IASI (FORLI) software developed at the Université Libre de Bruxelles (ULB). The IASI CO total column product for 2008 from the most recent FORLI retrieval version (20100815) is evaluated using correlative CO profile products retrieved from groundbased solar absorption Fourier transform infrared (FTIR) observations at the following FTIR spectrometer sites from the Network for the Detection of Atmospheric Composition Change (NDACC): Ny-Alesund, Kiruna, Bremen, Jungfraujoch, Izana and Wollongong. In order to have good statistics for the comparisons, we included all IASI data from the same day, within a 100 km radius around the ground-based stations. The individual ground-based data were adjusted to the lowest altitude of the co-located IASI CO profiles. To account for the different vertical resolutions and sensitivities of the ground-based and satellite measurements, the averaging kernels associated with the various retrieved products have been used to properly smooth coincident data products. It has been found that the IASI CO total column products compare well on average with the co-located ground-based FTIR total columns at the selected NDACC sites and that there is no significant bias for the mean values at all stations. [less ▲]

Detailed reference viewed: 72 (0 ULg)
Full Text
Peer Reviewed
See detailFirst space-based derivation of the global atmospheric methanol emission fluxes
Stavrakou, T.; Guenther, A.; Razavi, A. et al

in Atmospheric Chemistry and Physics (2011), 11

Detailed reference viewed: 16 (4 ULg)
Peer Reviewed
See detailHyperfine structure of Sc I by Infrared Fourier Transform Spectroscopy
Aboussaïd, A.; Carleer, M.; Hurtmans, D. et al

in Physica Scripta (1996), 53

Detailed reference viewed: 7 (1 ULg)