References of "Hubert, Aurelia"
     in
Bookmark and Share    
Full Text
See detailPaleoenvironmental implications in the dried lake sediments (Amik Lake, Southern Turkey)
El Ouahabi, Meriam ULg; Hubert, Aurelia ULg; Vander Auwera, Jacqueline ULg et al

Poster (2016, July)

The Amik Basin in the Eastern Mediterranean region has been continuously inhabited since 6000 – 7000 BC. The study focuses on the sedimentary record of the Amik Lake located in the central part of the ... [more ▼]

The Amik Basin in the Eastern Mediterranean region has been continuously inhabited since 6000 – 7000 BC. The study focuses on the sedimentary record of the Amik Lake located in the central part of the basin. Our objective is to constrain major paleo-environmental changes in the area over the last 4000 years and to unravel possible human impacts on the sedimentation. A diverse array of complementary methods was applied on the 6 m long record. Mineralogical (XRD), and geochemical (XRF) analyses were performed. The age of the record is constrained combining radionuclide and radiocarbon dating. A high sedimentation rate of 0.12 cm/yr was inferred at the studied site. The 4000 years (since ~1800 BC) long record shows that significant fluctuations of the lake level and the riverine system inflow into the Amik Lake occurred. The Late Bronze lowstand led to punctual dryings of the lake at the end of the Bronze/Iron Age transition. At that time, the rivers yielded a large terrigenous input linked to strong soil erosion related mainly to deforestation and exploitation of mineral resources. During the Roman and later periods, upland soils were partly depleted and the riverine system completely transformed by channelization (anthropic) that led to a marshification of the Amik Basin [1]. Chemical and mineralogical composition of sediments is quite diversified reflecting the significant geological variation of drainage basins. Periods with strong aggradation linked to major increase in erosion were identified and characterized by high amount of Cr, Ni and Zr. Levels relatively rich in fluorite, richterite, enstatite, hornblende and chrysotile are a result of the erosion of the ophiolitic rocks from the surrounding Amanos Mountains. These levels are interpreted as periods of relatively high physical erosion, while more humid periods led to more intensive weathering. Consequently, the dominance of kaolinite, muscovite/illite and talc indicates a climate with contrasting seasons. During the most recent period a marked increase in terrigenous minerals associated with a rise in dolomite indicates ungoing erosion as well as the drying-out of the lake. [1] T.J. Wilkinson, L. Rayne, Water History, 2, 115-144 (2010). [less ▲]

Detailed reference viewed: 16 (1 ULg)
See detailChemical and mineralogical proxies of erosion episodes in the dried lake sediments (Amik Lake, Southern Turkey): paleoenvironmental implications
El Ouahabi, Meriam ULg; Hubert, Aurelia ULg; Lebeau, Héléne et al

Poster (2016, April 17)

The Amik Basin in the Eastern Mediterranean region has been continuously occupied since 6000-7000 BC. The landscape has sustained with highly variable anthropic pressure culminating during the Late Roman ... [more ▼]

The Amik Basin in the Eastern Mediterranean region has been continuously occupied since 6000-7000 BC. The landscape has sustained with highly variable anthropic pressure culminating during the Late Roman Period when the Antioch city reached its golden age. The basin also sustained a high seismic activity (M≥7) as it is a releasing step-over along the Dead Sea Fault. The study focuses on the sedimentary record of the Amik Lake occupying the central part of the Basin. Our objective is to constrain major paleo-environmental changes in the area over the last 4000 years and to unravel possible human impacts on the sedimentation. A diverse array of complementary methods was applied on the 6 m long record. High resolution of mineralogical (XRD) and geochemical (XRF) analyses were performed. Quantitative mineralogical phases of sediments by the Rietveld method were computed using Topaz software. The age of the record is constrained combining radionuclide and radiocarbon dating, and checked using the correlation between the earthquake history and rapidly deposited layer identified. A high sedimentation rate of 0.12 cm/yr was inferred at the coring site. The 4000 years old record shows that significant fluctuations of the lake level and the riverine system inflow into the Amik Lake occurred. The Late Bronze lowstand leaded to punctual dryings of the lake at the end of the Bronze/Iron transition marked by the collapse of the Hittite Empire and during the Dark ages. At that time, the riverine was carrying a large terrigenous input linked to strong soil erosion related to deforestation, exploitation of mineral resources and the beginning of upland cultivation. During the Roman Period and in the later periods, upland soils were partly depleted and the riverine system completely transformed by channelization that leaded to a mashification of the Amik Basin. Chemical and mineralogical composition of sediments is quite diversified reflecting the significant geological variation of drainage basins. Abundant calcareous minerals, especially calcite, aragonite, dolomite and small amount of wollastonite characterize the different sedimentary levels recorded in the lake. Levels relatively rich in fluorite, richerite, enstatite, and wollastonite are a result of the erosion of the ophiolitic rocks from the surrounding Amanos Mountains. These levels are interpreted as corresponding to relatively high erosive periods, while more humid periods lead to more intensive weathering and consequently to the dominance of kaolinite, muscovite/illite and talc more advanced in the relative stability scale, indicating a climate with contrasting seasons. During the most recent Period a marked increase in terrigeneous minerals associated with a rise in dolomite indicates ungoing erosion as well as the drying-out of the lake. [less ▲]

Detailed reference viewed: 52 (7 ULg)
Full Text
Peer Reviewed
See detailSedimentary impacts of recent moderate earthquakes from the shelves to the basin floor in the western Gulf of Corinth
Beckers, Arnaud; Beck, Christian; Hubert, Aurelia ULg et al

in Marine Geology (2016)

In seismically active areas, long term records of large earthquakes are indispensable to constrain reccurence patterns of large earthquakes. In the western Corinth Rift, one of the most active areas in ... [more ▼]

In seismically active areas, long term records of large earthquakes are indispensable to constrain reccurence patterns of large earthquakes. In the western Corinth Rift, one of the most active areas in Europe in terms of seismicity, data about ancient earthquakes are still insufficient, despite historical records covering the last two millenia and several studies in onshore paleoseimology. In this paper, we test the use of offshore sediments from the Gulf of Corinth to identify sediment failures and tsunamis that have been triggered by historical earthquakes. Two shelves (40-100 m deep), one sub-basin (180 m) and the basin floor (330 m) have been sampled by short gravity cores. The cores were analysed in order to identify and characterize event deposits. The age control has been provided by 137Cs and 210Pb activity measurements showing that the cores represent 2 to 4 centuries of sedimentation. In each site, sandy event deposits are interbeded in the muddy, hemipelagic sedimentation. The age of event deposits has been compared to the record of historical earthquakes using new and published macroseismic data. This comparison shows temporal coincidence of some event deposits and documented earthquakes with a macroseismic intensity ≥ VII in the area, e.g. in A.D. 1861, 1888 and 1909. In near-shore, shallow water settings, the record of event deposits does not exactly fit with the historical record of large earthquakes because too few event deposits are present. This may be due to the absence of sediment failures or to a lower preservation of the deposits in such settings. In the deepest site, in the basin floor, the correspondence is better: a sandy turbidite probably corresponds to each large earthquake since A.D. 1850, except one aseismic sediment density flow that occurred at the end of the 20th century. Surprisingly, the Ms=6.2, June 15, 1995 Aigion earthquake is only possibly recorded in one near-shore site on the Aigion Shelf, in the form of a tsunami back-wash flow deposit. This study showed that moderate earthquakes (M 5.8-6.5) can significantly impact marine sediments. Regarding the evaluation of seismic hazard in the area, the basin floor is proposed as a promising site for long term paleoseismology in the Gulf of Corinth, while shallower settings need to be considered more carefully [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailA systematic review of geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan
Garrett, Ed; Fujiwara, Osamu; Garrett, Philip et al

in Earth-Science Reviews (2016)

The Nankai-Suruga Trough, the subduction zone that lies immediately south of Japan’s densely populated southern coastline, generates devastating great earthquakes (magnitude > 8) characterised by intense ... [more ▼]

The Nankai-Suruga Trough, the subduction zone that lies immediately south of Japan’s densely populated southern coastline, generates devastating great earthquakes (magnitude > 8) characterised by intense shaking, crustal deformation and tsunami generation. Forecasting the hazards associated with future earthquakes along this >700 km long fault requires a comprehensive understanding of past fault behaviour. While the region benefits from a long and detailed historical record, palaeoseismology has the potential to provide a longer-term perspective and additional crucial insights. In this paper, we summarise the current state of knowledge regarding geological evidence for past earthquakes and tsunamis along the Nankai-Suruga Trough. Incorporating literature originally published in both Japanese and English and enhancing available results with new age modelling approaches, we summarise and critically evaluate evidence from a wide variety of sources. Palaeoseismic evidence includes uplifted marine terraces and biota, marine and lacustrine turbidites, liquefaction features, subsided marshes and tsunami deposits in coastal lakes and lowlands. While 75 publications describe proposed evidence from more than 70 sites, only a limited number provide compelling, well-dated evidence. The best available records enable us to map the most likely rupture zones of twelve earthquakes occurring during the historical period. This spatiotemporal compilation suggests the AD 1707 earthquake ruptured almost the full length of the subduction zone and that earthquakes in AD 1361 and 684 may have been predecessors of similar magnitude. Intervening earthquakes were of lesser magnitude, highlighting the variability in rupture mode that characterises the Nankai-Suruga Trough. Recurrence intervals for ruptures of the same seismic segment range from less than 100 to more than 450 years during the historical period. Over longer timescales, palaeoseismic evidence suggests intervals between earthquakes ranging from 100 to 700 years, however these figures reflect a range of thresholds controlling the of creation and preservation of evidence at any given site as well as genuine earthquake recurrence intervals. At present, there is no geological data that suggest the occurrence of a larger magnitude earthquake than that experienced in AD 1707, however few studies have sought to establish the relative magnitudes of different earthquake and tsunami events along the Nankai-Suruga Trough. Alongside the lack of research designed to quantify the maximum magnitude of past earthquakes, we emphasise issues over alternative hypotheses for proposed palaeoseismic evidence, the paucity of robust chronological frameworks and insufficient appreciation of changing thresholds of evidence creation and preservation over time as key issues that must be addressed by future research. [less ▲]

Detailed reference viewed: 20 (1 ULg)
Full Text
Peer Reviewed
See detailEarthquake imprints on a lacustrine deltaic system: the Kürk Delta along the East Anatolian Fault (Turkey)
Hubert, Aurelia ULg; El Ouahabi, Meriam ULg; Garcia-Moreno, David et al

in Sedimentology (2016)

Deltas contain sedimentary records that are not only indicative of water level changes, but also particularly sensitive to earthquake shaking typically resulting in soft-sediment-deformation structures ... [more ▼]

Deltas contain sedimentary records that are not only indicative of water level changes, but also particularly sensitive to earthquake shaking typically resulting in soft-sediment-deformation structures. The Kürk lacustrine delta lies at the south-western extremity of Lake Hazar in eastern Turkey and is adjacent to the seismogenic East Anatolian Fault (EAF), which has generated earthquakes of magnitude 7. In this paper we have reevaluated water level changes and earthquake shaking that have affected the Kürk Delta combining geophysical data (seismic-reflection profiles and side-scan sonar), remote sensing images, historical data, onland outcrops and offshore coring. The history of water level changes provides a temporal framework for the depositional record. In addition to the commonly soft-sediment-deformation documented previously, onland outcrops reveal a record of deformation (fracturing, tilt and clastic dykes) linked to large earthquake-induced liquefactions and lateral spreading. The recurrent liquefaction structures can be used to obtain a paleoseismological record. Five event horizons were identified that could be linked to historical earthquakes occurring in the last 1000 years along the EAF. Sedimentary cores sampling the most recent subaqueous sedimentation revealed the occurrence of another type of earthquake indicator. Based on radionuclide dating (137Cs and 210Pb), two major sedimentary events were attributed to the 1874-1875 EAF earthquake sequence. Their sedimentological characteristics were determined by X-ray imagery, XRD, LOI, grain-size distribution and geophysical measurements. The events are interpreted to be hyperpycnal deposits linked to post-seismic sediment reworking of earthquake-triggered landslides. [less ▲]

Detailed reference viewed: 20 (1 ULg)
Full Text
See detailLand erosion and associated evolution of clay minerals assemblages in Mediterranean region (Southern Turkey): Amik Lake
El Ouahabi, Meriam ULg; Hubert, Aurelia ULg; Lebeau, Helene et al

Poster (2015, July)

Under Mediterranean context, continuous human occupation is attested in the Amik Basin (southern Turkey) since 6000-7000 BC. The Basin also is crossed by The Dead Sea Fault (DSF), a major neotectonic ... [more ▼]

Under Mediterranean context, continuous human occupation is attested in the Amik Basin (southern Turkey) since 6000-7000 BC. The Basin also is crossed by The Dead Sea Fault (DSF), a major neotectonic structure in the Middle East extending from the Red Sea in the south to the East Anatolian Fault Zone in the north. The study focuses on the mineralogy and clay mineralogy record of the Amik Lake occupying the central part of the Basin. Our objective is to constrain major mineralogical and clay minerals evolution in the area over the last 4000 years and assess changes that would be related to the different land uses during the different Bronze, Roman, Ottoman and Modern civilizations. Sediments were collected at 1 to 2 cm intervals in core sediments up to a depth of 6 meters in the clay deposits. Geochemistry (XRF), mineralogy (XRD) and clay mineralogy are applied to study the sediment records. The age of the record is constrained combining radionuclide and radiocarbon dating. Chemical and mineralogical composition of sediments is quite diversified reflecting the significant geological variation of drainage basins. Abundant mixed-layer and partly disordered minerals characterize the different sedimentary levels recorded in those cores. Levels relatively rich in chlorite, illite and quartz are interpreted as corresponding to relatively dry periods, while more humid periods lead to more intensive weathering and consequently to the dominance of clay minerals more advanced in the relative stability scale, such as kaolinite. Smectite is taken to indicate a climate with contrasting seasons and a pronounced dry season. The sedimentary record clearly shows two periods indicating strong soil erosion in the Lake catchment. The most recent erosion phase is modern. The oldest one would have started during the late Bronze period and lasted until the late Roman Period. The first and older period is attributed to a strong aggradation linked to major increase in erosion. Our study shows that this episode has specific characteristics: mixed-layer clay mineral, high percent in Ni, Cr and Mg coupled with significant amount of organic matter of terrestrial origin. Ni and Mg most probably come from the Amanos Mountains an ophiolitic belt indicating an intensive upland cultivation and possible exploitation of its mineral resource. The second period is attributed to the modern period. The signature of the increase in erosion is different, because most of the soil cover has already been eroded. Only a patchy thin and unmature soil cover exists since the Late Roman time. Erosion is associated with a marked increase of smectite-illite interstratified clay, goethite and hematite found in deep soil horizons. Moreover, a marked increase in Cr is showed and is probably related to an enhanced exploitation of its mineral resource and to a renew land exploitation of the Amanos Mountain Range. [less ▲]

Detailed reference viewed: 57 (7 ULg)
Full Text
See detailLate Holocene history of the Fuji Five Lakes (Japan)
Lamair, Laura ULg; Hubert, Aurelia ULg; Boes, Evelien et al

Conference (2015, July)

Detailed reference viewed: 25 (5 ULg)
Full Text
Peer Reviewed
See detailInfluence of bottom currents on the sedimentary processes at the western tip of the Gulf of Corinth, Greece
Beckers, Arnaud ULg; Beck, Christian; Hubert, Aurelia ULg et al

in Marine Geology (2015)

We investigated the sedimentary processes that were active during the Holocene in the Gulf of Corinth, using high-resolution seismic reflection profiles and gravity cores. Seismic reflection data clearly ... [more ▼]

We investigated the sedimentary processes that were active during the Holocene in the Gulf of Corinth, using high-resolution seismic reflection profiles and gravity cores. Seismic reflection data clearly show the presence of shallow-water sediment drifts at the western end of the Gulf, close to the Rion Sill that links the gulf to the Ionian Sea. Short cores indicate that drifts are composed of homogenous bioturbated mud in their upper part. The drift deposits flank a wide central area where the sea floor is eroded and where pre-Holocene deposits locally outcrop. The sea floor morphology in this area is marked by furrows oriented in different directions and by a depression attributed to the action of bottom-currents. The magnetic fabric of sediment samples from the drift, shelves, sub-basins and from the basin floor show a significant anisotropy and a similar orientation of Kmax axes along core. The largest anisotropy (P = 1.043 ± 0.007) is observed in the drift and is interpreted as resulting from the action of bottom currents. The similar orientation of Kmax axes in the other cores, collected from areas East of the drifts, suggests that bottom currents also affect sediment deposition in the rest of the study area, even if seismic profiles and core analyses demonstrate that gravitational processes such as submarine landslides and turbidity currents exert the main control on sediment transport and deposition. Average Kmax axes for four cores were reoriented using the declination of the characteristic remanent magnetization. Kmax axes show variable orientations relatively to the slope of the sea floor, between along-slope and roughly parallel to the contour lines. [less ▲]

Detailed reference viewed: 88 (5 ULg)
Full Text
Peer Reviewed
See detailSedimentary impacts of recent moderate earthquakes in different settings in the Western Gulf of Corinth, Greece
Beckers, Arnaud ULg; Mortier, Clément; Beck, Christian et al

Poster (2015, April 21)

11 short gravity cores retrieved in the Western Gulf of Corinth, Greece, allowed identifying event deposits whose age ranges were compared to an updated earthquakes catalogue for the area. 210Pb-derived ... [more ▼]

11 short gravity cores retrieved in the Western Gulf of Corinth, Greece, allowed identifying event deposits whose age ranges were compared to an updated earthquakes catalogue for the area. 210Pb-derived age-depth curves show that the majority of the event deposits may have been triggered by earthquakes. These results show that moderate earthquakes (Mw ~6.0-6.5) may significantly impact different marine settings, from shallow shelves (70-100 m deep) to the basin floor (330 m deep). The deepest coring sites show the best possible record, but one major earthquake is missing and the age of one event deposit does not fit with any known earthquake. More cores are needed to check the spatial extent of each deposit and to validate the absence of record of some earthquakes, like the 1995 Aigion earthquake. [less ▲]

Detailed reference viewed: 36 (5 ULg)
Full Text
See detailBasement depth and sedimentary infill from deep seismic reflection data at the western tip of the offshore Corinth Rift
Beckers, Arnaud ULg; Tripsanas, Efthymios; Hubert, Aurelia ULg et al

Conference (2015, April 17)

The Corinth rift is a young continental rift located in central Greece. The active part of the rift forms an E-W striking depression – the Gulf of Corinth – that is the deepest in its central part ... [more ▼]

The Corinth rift is a young continental rift located in central Greece. The active part of the rift forms an E-W striking depression – the Gulf of Corinth – that is the deepest in its central part. Extensive seismic surveys have imaged the basin's basement and allowed to estimate the total extension across most of the Gulf except its western tip. Extension is high in the central part and decreases westward and eastward, as reflected in the present-day bathymetry. Two decades of GPS measurements have shown that the extension rate increases westwards from ~5 to 10-15 mm yr-1, but this is not consistent with the long term pattern. However, no data allowed so far to estimate the basement depth at the western tip of the Gulf, where the geodetic extension rate is the largest. Such data would allow to check the apparent inconsistency between the present rate and the long-term estimates of crustal extension. We present here an unpublished multichannel seismic line dating from 1979 and crossing the western tip of the Gulf of Corinth. The line is 22 km long and strikes WNW-ESE, from the Mornos delta to the West-Channel fault. A Maxipulse source has been used, allowing to image the basement below the synrift sedimentary infill. To the east, a ~1.6 km deep basin is imaged between the southern margin of the Gulf and an inactive south-dipping fault located between the Aigion and the Trizonia faults. The sedimentary infill consists in an alternation between basin-focused bodies made of incoherent reflections and more extensive high-amplitude reflectors. Attributing this alternation to eustatic variations give an age of 300-350 ka to the oldest well imaged deposits. Northwest of the Trizonia fault, the basement is imaged at shallower depth, i.e. ~450 m. The western tip of the seismic line reaches the Mornos delta, close to the northern shoreline. There, the depth to the basement is larger, reaching ~1.2 km. The infill is made of 3 units : on the basement lies a thin unit of incoherent reflections that may corresponds to coarse-grained fluvial deposits. A second unit of parallel, high-amplitude, low-frequency reflections could represent deeper-water deposits. The last seismic unit represents the Mornos delta coarse-grained deposits, from 0 to ~0.7 km deep. The depth of the basement deduced from this seismic line at the western tip of the Gulf of Corinth (1.2-1.6 km) is shallower than the one in the central part of the Gulf (2.5-3 km). This reinforce the inconsistency between long-term and short-term rates of extension in the Corinth Rift, which may be explained by assuming that the Western Corinth Rift initiated much later than the Central Rift. These data also allow to constrain the total displacement on the N-dipping Psathopyrgos fault, one of the major, normal, basin-bounding faults at the western tip of the Rift. The total offset would reach 2.1-2.3 km and the uplift/subsidence ratio would be ~1:1.7, implying a slip rate of 2.2-2.5 mm yr-1 based on footwall uplift rate data. [less ▲]

Detailed reference viewed: 25 (1 ULg)
Full Text
See detailInvestigation of the Five Fuji Lakes and their potential of recording paleoearthquakes
Lamair, Laura ULg; Hubert, Aurelia ULg; Boes, Evelien et al

Conference (2015, March 04)

Detailed reference viewed: 23 (4 ULg)
Full Text
Peer Reviewed
See detailCharacterization of building materials from the aqueduct of Antioch-on-the-Orontes (Turkey)
Benjelloun, Yacine; de Sigoyer, Julia; Carlut, Julia et al

in Comptes Rendus Geoscience (2015)

The Roman aqueduct of Antioch-on-the-Orontes (Turkey), a city located near the junction between the active Dead Sea fault and the East Anatolian fault, has been damaged several times due to historical ... [more ▼]

The Roman aqueduct of Antioch-on-the-Orontes (Turkey), a city located near the junction between the active Dead Sea fault and the East Anatolian fault, has been damaged several times due to historical earthquakes, as mentioned in ancient texts. The traces of repairs are studied in order to identify their potential seismic origin. The deformations of the structure were characterised thanks to a LIDAR scan. Several bricks were sampled on different parts of the city’s aqueducts, on the original structure and on repaired parts. The bricks were characterized through a petrological approach. 14C and archaeomagnetism were tested on the bricks in order to constrain the age of their production. The synthesis of all the data showed a local origin for the bricks, and led to the identification of several manufacturing techniques and several types of production, thus, confirming the potentiality of this approach to date and characterise post-seismic repairs. [less ▲]

Detailed reference viewed: 19 (2 ULg)
Full Text
Peer Reviewed
See detailSubmarine Paleo-earthquake record of the Cinarcik segment of the North Anatolian Fault in the Marmara Sea (Turkey)
Drab, Laureen; Hubert, Aurelia ULg; Schmidt, Sabine et al

in Bulletin Seismological Society of America (2015), 105

The submarine part of the North Anatolian Fault (NAF) in the Marmara Sea is a significant hazard for the city of Istanbul (Turkey). The use of paleoseismological data to provide an accurate seismic risk ... [more ▼]

The submarine part of the North Anatolian Fault (NAF) in the Marmara Sea is a significant hazard for the city of Istanbul (Turkey). The use of paleoseismological data to provide an accurate seismic risk assessment for the area is constrained by the fact that the NAF system is submarine near Istanbul; thus a history of paleoearthquakes can be inferred only by using sediment cores. Here a record of turbidites was obtained in two cores and used to reconstruct the earthquake history along a main branch of the NAF, the Cinarcik Segment. Kullenberg core Klg04 (4 m long) was collected during Marmarascarps mission from a berm north of the fault and a second core (Klg03, 3.5 m long) was positioned in the Cinarcik Basin, 3 km south of the fault. Sedimentary sequences in the two cores were correlated using variations in Ca/Ti ratio, which reflect the local aquatic productivity compared with more terrigenous input. The turbidites between the two cores were then classified to distinguish the synchronous ones from the other ones. Radionuclide measurements suggest that the most recent turbidite recorded in both cores was triggered by the M=7.3 1894 earthquake. We conclude that the turbidites are earthquake-generated, based on: 1) their distinctive sedimentological and geochemical signatures, previously described and applied in the Marmara Sea; 2) the correlation of turbidites between cores at berm and basin sites; 3) the match of the most recent turbidites with a 19th century historical earthquake; and 4) the elimination of others processes. Because of its specific geomorphological location, core Klg04 likely records only mass wasting events related to the rupture on the Cinarcik Segment. To date older turbidites, we used 14C and paleomagnetic data to build an OxCal age model with a local reservoir correction (ΔR) of 400±50 yr. The Cinarcik Segment is found to have ruptured in AD1894, AD1509, sometime in the 14th century, AD989, AD740 and in the 5th century and have a mean recurrence interval of rupture between 243 and 396 years. Following the age model obtained we finally used the earthquake record history of the Cinarcik Segment to infer the rupture history of adjacent segments of the North Anatolian Fault during six earthquake cycles over the past 1500 years. [less ▲]

Detailed reference viewed: 87 (36 ULg)