References of "Huang, Yi-Shiang"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBiointerface multiparametric investigation of intraocular lens acrylic materials
Bertrand, Virginie ULg; Bozukova, Dimitriya; Svaldo Lanero, Tiziana et al

in Journal of Cataract & Refractive Surgery (2014), 40(9), 1536-1544

Detailed reference viewed: 13 (7 ULg)
Full Text
See detailAn innovative lens surface functionalization to control Posterior Capsular Opacification
Huang, Yi-Shiang ULg

Poster (2014, May 26)

Cataract is the opacity of the lens, causing impairment of vision or even blindness and the surgery is still the only available treatment today. The intraocular lens (IOL) is a polymer implant designed to ... [more ▼]

Cataract is the opacity of the lens, causing impairment of vision or even blindness and the surgery is still the only available treatment today. The intraocular lens (IOL) is a polymer implant designed to replace the natural lens in the cataract surgery. However, the bio-inert materials could not satisfy the unmet need in the secondary cataract control. Posterior capsular opacification (PCO, or Secondary Cataract), characterized by a thick and cloudy layer of lens epithelial cells (LECs), is the most common postoperative complication. For the present study, a bioactive molecule is immobilized onto the conventional acrylic hydrophilic polymer pHEMA (Poly(2-hydroxyethyl methacrylate)) using oxygen plasma treatment followed by dip-coating deposition. The RGD peptide sequence, being well-known for its ability to promote cellular attachment by binding to integrin receptors, is designed to stimulate the adhesion of LECs on the IOL. The data have shown the peptide immobilized biomaterial not only exhibits similar optical and physical properties, but also reveals enhanced bio-logical properties in cell adhesion and cell morphology maintenance. By means of surface functionalization of IOL to stimulate LECs adhesion, the secondary cataract could be controlled. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
See detailBioactive Intraocular Lens - A Strategy to Control Secondary Cataract
Huang, Yi-Shiang ULg

Poster (2014, May 21)

Detailed reference viewed: 9 (2 ULg)
Full Text
Peer Reviewed
See detailBiointerface multiparametric study of intraocular lens acrylic materials.
Bertrand, Virginie ULg; Bozukova, Dimitriya; Svaldo Lanero, Tiziana et al

in Journal of cataract and refractive surgery (2014), 40(9), 1536-44

PURPOSE: To compare hydrophilic and hydrophobic acrylic materials designed for intraocular lenses in a multiparametric investigation in a liquid environment to highlight their properties in terms of ... [more ▼]

PURPOSE: To compare hydrophilic and hydrophobic acrylic materials designed for intraocular lenses in a multiparametric investigation in a liquid environment to highlight their properties in terms of adhesion forces, lens epithelial cell (LEC) adhesion, and tissue response as indicators of the risk for posterior capsule opacification (PCO) development. SETTING: University of Liege, Liege, Belgium. DESIGN: Experimental study. METHODS: The hydrophobicity and surface adhesion force were assessed using contact-angle and atomic force microscopy measurements. The bioadhesiveness of the disks and the tissue response were determined by in vitro experiments using bovine serum albumin and porcine LECs and by in vivo rabbit subcutaneous implantation, respectively. RESULTS: Increasing surface hydrophobicity led to a greater surface-adhesion force and greater LEC adhesion. After 1 month, the rabbit subcutaneous implants showed a similar thin layer of fibrous capsule surrounding the disks without extensive inflammation. A layer of rounded cells in contact with disks was detected on the hydrophobic samples only. CONCLUSIONS: Hydrophobic acrylic disks that have been associated with a reduced risk for PCO in clinical studies showed increased tackiness. FINANCIAL DISCLOSURES: Proprietary or commercial disclosures are listed after the references. [less ▲]

Full Text
Peer Reviewed
See detailBioactive Intraocular Lens – A Strategy to Control Secondary Cataract
Huang, Yi-Shiang ULg; Bertrand, Virginie ULg; Bozukova, Dimitriya et al

in IFMBE Proceedings (2014), 41

Cataract is the opacity of the lens, causing impairment of vision or even blindness. Today, a surgery is still the only available treatment. The intraocular lens (IOL) is a polymer implant designed to ... [more ▼]

Cataract is the opacity of the lens, causing impairment of vision or even blindness. Today, a surgery is still the only available treatment. The intraocular lens (IOL) is a polymer implant designed to replace the natural lens in the cataract surgery. However, the bioinert materials could not satisfy the unmet need in the secondary cataract control. Posterior capsular opacification (PCO, or Secondary Cataract), characterized by a thick and cloudy layer of lens epithelial cells (LECs), is the most common postoperative complication. In our research, a bioactive molecule is immobilized onto the conventional acrylic hydrophilic polymer pHEMA (Poly(2-hydroxyethyl methacrylate)) using oxygen plasma treatment followed by deposition. The RGD peptide sequence, being well-known for its ability to promote cellular attachment by binding to integrin receptors, is designed to stimulate the adhesion of LECs on the IOL. Our data show the peptide immobilized biomaterial not only exhibits similar optical property, but also reveals enhanced biological properties in cell adhesion and cell morphology maintenance. By means of surface functionalization of IOL to stimulate LECs adhesion, the secondary cataract could be controlled. [less ▲]

Detailed reference viewed: 43 (16 ULg)
Full Text
See detailPolymer based intraocular lens adsorbome: a bottom up proteomics study
Bertrand, Virginie ULg; Huang, Yi-Shiang ULg; Mazzucchelli, Gabriel ULg et al

Conference (2013, September 08)

In the present work an optimized sample preparation protocol to identify and quantify the “adsorbomes” of hydrophilic and hydrophobic materials for IOLs known to have a higher or a lower incidence of PCO ... [more ▼]

In the present work an optimized sample preparation protocol to identify and quantify the “adsorbomes” of hydrophilic and hydrophobic materials for IOLs known to have a higher or a lower incidence of PCO, respectively was obtained. [less ▲]

Detailed reference viewed: 34 (9 ULg)
Full Text
See detailIntraocular lenses with functionalized surfaces by biomolecules in relation with lens epithelial cell adhesion
Huang, Yi-Shiang ULg; Alexandre, Michaël ULg; Bozukova, Dimitriya et al

Poster (2013, April 25)

A cataract is pathology opacity of the lens or capsule of the eye, causing impairment of vision or even blindness. Surgery, with lens extraction and intraocular lens implantation, is still the only ... [more ▼]

A cataract is pathology opacity of the lens or capsule of the eye, causing impairment of vision or even blindness. Surgery, with lens extraction and intraocular lens implantation, is still the only currently available treatment. The most common complication after implantation of intraocular lenses (IOLs) is the posterior capsular opacification (PCO) or secondary cataract. This is the result of lens epithelial cells (LECs) proliferation and their transition to mesenchymal cells. In 1997, a Sandwich theory was proposed to elucidate the developmental process of PCO. [1] According to this model, an IOL with higher affinity to LECs will induce a less PCO. In our research, the pHEMA (Poly(2-hydroxyethyl methacrylate)) based acrylic hydrophilic polymer is subjected to the surface modification by conjugating with the bioactive peptides. The RGD sequence, known for its excellent biocompatibility, is designed to stimulate the biointegration between the LECs and the polymer implant. [2]. From our research, The RGD peptide immobilized onto pHEMA surfaces significantly facilitates the adhesion of the porcine LEC. The peptide immobilized surface retains its biological function even after 10 times of autoclave. On the other hand, the immobilized peptide does not alter the hydrophobicity of the surface, the light transmission, as well as the cytotoxicity of the material. This functionalized biomaterial would possibly prevent the formation of PCO. [1] J Cataract Refract Surg. 1997 Dec;23(10):1539-42 [2] Trends Biotechnol. 2008 Jul;26(7):382-92 [less ▲]

Detailed reference viewed: 29 (6 ULg)
Full Text
See detailIntraocular Lens Adsorbome: a Proteomic Study of Adsorbed Proteins onto Acrylic Materials and Its Implication in Secondary Cataract
Huang, Yi-Shiang ULg; Bertrand, Virginie ULg; Mazzucchelli, Gabriel ULg et al

Poster (2012, September 17)

The intraocular lens (IOL) is a polymer implant designed to replace the natural lens after cataract surgery. When the implant is introduced into the lens capsule, the polymer starts to interact with the ... [more ▼]

The intraocular lens (IOL) is a polymer implant designed to replace the natural lens after cataract surgery. When the implant is introduced into the lens capsule, the polymer starts to interact with the aqueous humour and the exchange of molecules between the solid and the liquid begins. The nature of exchange in water, ions, and biomolecules may result in several postoperative complications including glistening, calcification, and posterior capsular opacification. The posterior capsular opacification (PCO, also called “Secondary Cataract”) is raised from the over-growth of residual lens epithelial cells. The first step of the over-growth process of the cells is their adhesion to the deposited biomolecules, such as proteins involved in extra-cellular matrices. The purpose of this study is to identify the principal proteins adsorbed onto the acrylic polymers by mass spectrometry. The concept of adsorbome is to generate a list of adsorbed proteins to the hydrophilic and hydrophobic polymers, and then compare the difference to the original component of aqueous humour in order to see the affinity of individual protein to each material. Two kinds of hydrophilic and two kinds of hydrophobic acrylic polymers were tested for their adsorbomes by treating them with an aqueous humour analogue and the major adsorbed proteins were identified by mass spectrometry. Interestingly, the hydrophilic acrylic polymer shows a relative lower protein adsorption rate but shows a higher incidence of secondary cataract. This phenomenon implies the adsorbed proteins play a crucial role in progress of secondary cataract. [less ▲]

Detailed reference viewed: 111 (22 ULg)
Full Text
See detailBioactive Intraocular Lens - A New Concept to Control Secondary Cataract
Huang, Yi-Shiang ULg; Alexandre, Michaël ULg; Bozukova, Dimitriya et al

Poster (2012, August 29)

A cataract is pathology opacity of the lens, causing impairment of vision or even blindness. Today, a surgery is still the only available treatment. The intraocular lens (IOL) is a polymer implant ... [more ▼]

A cataract is pathology opacity of the lens, causing impairment of vision or even blindness. Today, a surgery is still the only available treatment. The intraocular lens (IOL) is a polymer implant designed to replace the natural lens in the cataract surgery. The materials for IOL require excellent optical properties for light transmission, mechanical properties for folding injection during surgery, and biological properties for preventing body rejection. The biocompatibility - or more specified, bio-inert - seems to be the prerequisite in selecting the materials. [1] However, the bioinert materials could not satisfy the unmet need in the secondary cataract control. Posterior capsular opacification (PCO, or Secondary Cataract), characterized by a thick and cloudy layer of lens epithelial cells (LECs), is the most common postoperative complication. In 1997, a “Sandwich Theory” model was proposed to elucidate the developmental process of PCO. [2] In this model, the residual LECs between the lens capsular bag and the IOL undergo proliferation, migration, as well as transdifferentiation and finally induce PCO if the affinity to the IOL material is low. In our research, a bioactive molecule is introduced to the conventional acrylic hydrophilic polymer pHEMA(Poly(2-hydroxyethyl methacrylate)) by covalent conjugation. The RGD peptide sequence, being well-known for its tissue integration ability, is designed to stimulate the biointegration between the LECs and the IOL. [3]. Our data have shown the peptide grafted biomaterial not only exhibits similar optical and mechanical properties, but also reveals enhanced biological properties in cell adhesion and cell morphology maintenance. By means of surface functionalization of IOL to stabilize and restore LECs, the secondary cataract could be controlled in a regenerative medicine way. References [1] Dimitriya Bozukova (2010) Materials Science and Engineering R, 69: 63-83. [2] Reijo Linnola (1997) J Cataract Refract Surg., 10: 1539–42. [3] Ruoslahti E (1986) Cell, 44(4): 517-8. [less ▲]

Detailed reference viewed: 46 (15 ULg)
See detailIntraocular Lenses with Functionalized Surfaces by Biomolecules in Relation with Lens Epithelial Cell Adhesion
Huang, Yi-Shiang ULg

Conference (2012, March 27)

A cataract is pathology opacity of the lens or capsule of the eye, causing impairment of vision or even blindness. In 1998, it was estimated that worldwide 19.4 million people were bilaterally blind from ... [more ▼]

A cataract is pathology opacity of the lens or capsule of the eye, causing impairment of vision or even blindness. In 1998, it was estimated that worldwide 19.4 million people were bilaterally blind from age-related cataract. Surgery, with lens extraction and intraocular lens implantation, is still the only currently available treatment. More than 1.3 million cataract operations were performed in the USA in 1998 at a cost of $3.5 billion. The most common complication after implantation of intraocular lenses (IOLs) is the posterior capsular opacification (PCO) or secondary cataract. This is the result of lens epithelial cells (LECs) proliferation and their transition to mesenchymal cells. In 1997, a Sandwich theory was proposed to elucidate the developmental process of PCO. According to this model, an IOL with higher affinity to LECs will induce a less PCO. In our research, the pHEMA (Poly(2-hydroxyethyl methacrylate)) based acrylic hydrophilic polymer is subjected to the surface modification by conjugating with the bioactive peptides. The RGD sequence, known for its excellent biocompatibility, is designed to stimulate the biointegration between the LECs and the polymer implant. Our research program will focus on the evaluation of the physical, mechanical and biological properties of the lens before and after peptide grafting. These diverse tests include contact angle measurements, Atomic Force Microscopy (AFM), x-ray photoelectron spectroscopy (XPS), FTIR/ATR, Scanning Electron Microscopy (SEM), and the MTS cytotoxicity assay. [less ▲]

Detailed reference viewed: 24 (13 ULg)
Full Text
Peer Reviewed
See detailAnti-UVC Irradiation and Metal Chelation Properties of 6-Benzoyl-5,7-dihydroxy-4-phenyl-chromen-2-one: An Implication for Anti-Cataract Agent
Liao, Jiahn-Haur; Wu, Tzu-Hua; Hsu, Feng-Lin et al

in International Journal of Molecular Sciences (2011), 12

Coumarin derivative 1, 5,7-dihydroxy-6-(3-methyl-1-butyryl)-4-phenyl-chromen- 2-one, has been reported to possess radical scavenging activity and DNA protection. We have synthesized a series of coumarins ... [more ▼]

Coumarin derivative 1, 5,7-dihydroxy-6-(3-methyl-1-butyryl)-4-phenyl-chromen- 2-one, has been reported to possess radical scavenging activity and DNA protection. We have synthesized a series of coumarins with structural modifications at positions C4, C5, C6 and C7 and evaluated them for their anti-UVC properties. Coumarin 7, 6-benzoyl-5,6-dihydroxy-4-phenyl-chromen-2-one, was found to have the most potent activity in protecting porcine γ-crystallin against UVC insults. Results of fluorescence assays indicated that compound 7 was capable of decreasing the loss of intensity while lens crystallins and DNA PUC19 were irradiated with UVC. Presence of compound 7 decreased hydroxyl radical levels determined by probe 1b and the free iron concentrations determined by Ferrozine reagent. The chelation assay showed that compound 7 was chelated to metal via 6-CO and 5-OH on the benzopyrone ring. The observed protective effects of compound 7 towards crystallins from insults of UVC and free radicals may be due to its iron-chelating activity and its peak absorption at 254 nm. [less ▲]

Detailed reference viewed: 23 (3 ULg)
Full Text
Peer Reviewed
See detailRole of pirenoxine in the effects of catalin on in vitro ultraviolet-induced lens protein turbidity and selenite-induced cataractogenesis in vivo.
Hu, Chao-Chien; Hsu, Kuang-Yang; Lin, I-Lin et al

in Molecular Vision (2011), 17

Purpose: In this study, we investigated the biochemical pharmacology of pirenoxine (PRX) and catalin under in vitro selenite/calcium- and ultraviolet (UV)-induced lens protein turbidity challenges. The ... [more ▼]

Purpose: In this study, we investigated the biochemical pharmacology of pirenoxine (PRX) and catalin under in vitro selenite/calcium- and ultraviolet (UV)-induced lens protein turbidity challenges. The systemic effects of catalin were determined using a selenite-induced cataractogenesis rat model. Methods: In vitro cataractogenesis assay systems (including UVB/C photo-oxidation of lens crystallins, calpain-induced proteolysis, and selenite/calcium-induced turbidity of lens crystallin solutions) were used to screen the activity of PRX and catalin eye drop solutions. Turbidity was identified as the optical density measured using spectroscopy at 405 nm. We also determined the in vivo effects of catalin on cataract severity in a selenite-induced cataract rat model. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) was applied to analyze the integrity of crystallin samples. Results: PRX at 1,000 μM significantly delayed UVC-induced turbidity formation compared to controls after 4 h of UVC exposure (p<0.05), but not in groups incubated with PRX concentrations of <1,000 μM. Results were further confirmed by SDS–PAGE. The absolute γ-crystallin turbidity induced by 4 h of UVC exposure was ameliorated in the presence of catalin equivalent to 1~100 μM PRX in a concentration-dependent manner. Samples with catalin-formulated vehicle only (CataV) and those containing PRX equivalent to 100 μM had a similar protective effect after 4 h of UVC exposure compared to the controls (p<0.05). PRX at 0.03, 0.1, and 0.3 μM significantly delayed 10 mM selenite- and calcium-induced turbidity formation compared to controls on days 0~4 (p<0.05). Catalin (equivalent to 32, 80, and 100 μM PRX) had an initial protective effect against selenite-induced lens protein turbidity on day 1 (p<0.05). Subcutaneous pretreatment with catalin (5 mg/kg) also statistically decreased the mean cataract scores in selenite-induced cataract rats on post-induction day 3 compared to the controls (1.3±0.2 versus 2.4±0.4; p<0.05). However, catalin (equivalent to up to 100 μM PRX) did not inhibit calpain-induced proteolysis activated by calcium, and neither did 100 μM PRX. Conclusions: PRX at micromolar levels ameliorated selenite- and calcium-induced lens protein turbidity but required millimolar levels to protect against UVC irradiation. The observed inhibition of UVC-induced turbidity of lens crystallins by catalin at micromolar concentrations may have been a result of the catalin-formulated vehicle. Transient protection by catalin against selenite-induced turbidity of crystallin solutions in vitro was supported by the ameliorated cataract scores in the early stage of cataractogenesis in vivo by subcutaneously administered catalin. PRX could not inhibit calpain-induced proteolysis activated by calcium or catalin itself, and may be detrimental to crystallins under UVB exposure. Further studies on formulation modifications of catalin and recommended doses of PRX to optimize clinical efficacy by cataract type are warranted. [less ▲]

Detailed reference viewed: 29 (8 ULg)