References of "Houard, X"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMR Imaging of Iron Phagocytosis in Intraluminal Thrombi of Abdominal Aortic Aneurysms in Humans.
NCHIMI LONGANG, Alain ULg; Defawe, Olivier; Brisbois, Denis ULg et al

in Radiology (2010), 254(3), 973-81

Detailed reference viewed: 61 (38 ULg)
Full Text
Peer Reviewed
See detailEarlier onset of tumoral anglogenesis in matrix metalloproteinase-19-deficient mice
Jost, M.; Folgueras, A. R.; Frerart, F. et al

in Cancer Research (2006), 66(10), 5234-5241

Among matrix metalloproteinases (MMP), MMP-19 displays unique structural features and tissue distribution. In contrast to most MMPs, MMP-19 is expressed in normal human epidermis and down-regulated during ... [more ▼]

Among matrix metalloproteinases (MMP), MMP-19 displays unique structural features and tissue distribution. In contrast to most MMPs, MMP-19 is expressed in normal human epidermis and down-regulated during malignant transformation and dedifferentiation. The contribution of MMP-19 during tumor angiogenesis is presently unknown. In an attempt to give new insights into MMP-19 in vivo functions, angiogenic response of mutant mice lacking MMP-19 was analyzed after transplantation of murine malignant PDVA keratinocytes and after injection of Matrigel supplemented with basic fibroblast growth factor. In situ hybridization and immunohistochemical analysis revealed that MMP-19 is produced by host mesenchymal cells but not by endothelial capillary cells or CD11b-positive inflammatory cells. Based on a new computer-assisted method of quantification, we provide evidence that host MMP-19 deficiency was associated with an increased early angiogenic response. In addition, increased tumor invasion was observed in MMP-19-/- mice. We conclude that, in contrast to most MMPs that promote tumor progression, MMP-19 is a negative regulator of early steps of tumor angiogenesis and invasion. These data highlight the requirement to understand the individual functions of each MMP to improve anticancer strategies. [less ▲]

Detailed reference viewed: 43 (9 ULg)
Full Text
Peer Reviewed
See detailMigration-stimulating factor displays HEXXH-dependent catalytic activity important for promoting tumor cell migration
Houard, X.; Germain, S.; Gervais, M. et al

in International Journal of Cancer = Journal International du Cancer (2005), 116(3), 378-384

Like most extracellular matrix (ECM) components, fibronectin (Fn) is proteolyzed generating specific activities. Fibronectin proteinase (Fn-proteinase) represents such a cryptic activity located in the ... [more ▼]

Like most extracellular matrix (ECM) components, fibronectin (Fn) is proteolyzed generating specific activities. Fibronectin proteinase (Fn-proteinase) represents such a cryptic activity located in the gelatin-binding domain (GBD) of Fn and displays a zinc metalloproteinase activity. The migration-stimulating factor (MSF) is a truncated Fn isoform generated by alternative mRNA splicing and corresponds to the N-terminal part of Fn that comprises the GBD. We show that several human mammary epithelial cells express MSF and constitutively produce Fn-proteinase activity. Furthermore, recombinant M F produced by HEK-293 and MCF-7 cells possesses a constitutive Fn-proteinase activity. Mutating the putative zinc-binding motif, HEXXH, of the protein abolishes its activity thereby demonstrating its specificity. Using PCR, we showed that MSF is barely expressed in normal breast tissues, whereas its expression is significantly increased in tumors. Furthermore, an association between MSF expression and invasive capacity is observed in various breast adenocarcinoma cell lines. Indeed, when stably transfected in non-invasive MCF-7 cells, MSF promotes cell migration in a mechanism mostly dependent on its Fn-proteinase activity. In summary, our study shows that: (i) MSF displays constitutive Fn-proteinase activity; (ii) MSF expression is induced in human breast cancer; and (iff) MSF confers pro-migratory activity that depends mostly on its Fn-proteinase activity. These results suggest that MSF may be involved in tumor progression. (C) 2005 Wiley-Liss, Inc. [less ▲]

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailHost plasminogen activator inhibitor-1 promotes human skin carcinoma progression in a stage-dependent manner
Maillard, Catherine ULg; Jost, M.; Romer, M. U. et al

in Neoplasia : An International Journal for Oncology Research (2005), 7(1), 57-66

Angiogenesis and tumor expansion are associated with extracellular matrix remodeling and involve various proteases such as the plasminogen (Plg)/plasminogen activator (PA) system. Recently, several ... [more ▼]

Angiogenesis and tumor expansion are associated with extracellular matrix remodeling and involve various proteases such as the plasminogen (Plg)/plasminogen activator (PA) system. Recently, several experimental data have implicated the plasminogen activator inhibitor-1 (PAI-1) in tumor angiogenesis in murine systems. However, little is known about PAI-1 functions in human skin carcinoma progression. By generating immunodeficient mice (in Rag-1(-/-) or nude background) deleted for PAI-1 gene (PAI-1(-/-)), we have evaluated the impact of host PAI-1 deficiency on the tumorigenicity of two malignant human skin keratinocyte cell lines HaCaT II-4 and HaCaT A5-RT3 forming low-grade and high-grade carcinomas, respectively. When using the surface transplantation model, angiogenesis and tumor invasion of these two cell lines are strongly reduced in PAI-1-deficient mice as compared to the wild-type control animals. After subcutaneous injection in PAI-1-/- mice, the tumor incidence is reduced for HaCaT II-4 cells, but not for those formed by HaCaT A5-RT3 cells. These data indicate that PAI-1 produced by host cells is an important contributor to earlier stages of human skin carcinoma progression. It exerts its tumor-promoting effect in a tumor stage-dependent manner, but PAI-1 deficiency is not sufficient to prevent neoplastic growth of aggressive tumors of the human skin. [less ▲]

Detailed reference viewed: 33 (2 ULg)