References of "Holsclaw, Greg"
     in
Bookmark and Share    
See detailFirst Detection of the Nitric Oxide Dayglow on Mars
Stevens, Michael H.; Siskind, David E.; Evans, J. Scott et al

Conference (2017, October 01)

Nitric oxide (NO) is a well-known indicator of solar and auroral activity in the terrestrial upper atmosphere. Direct measurements of NO on Mars can therefore constrain studies of energetic processes ... [more ▼]

Nitric oxide (NO) is a well-known indicator of solar and auroral activity in the terrestrial upper atmosphere. Direct measurements of NO on Mars can therefore constrain studies of energetic processes controlling the composition and structure of its upper atmosphere (80-200 km). Identifying and quantifying these processes is one of the science objectives of NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission currently orbiting Mars. NO can be observed directly by solar resonance fluorescence in the mid-ultraviolet (MUV). Indeed, this approach has routinely been used to measure terrestrial NO for 50 years. On Mars, this “dayglow” emission is very weak relative to other bright MUV features and thus has confounded attempts at its detection there for nearly the same amount of time. Here, we report the first detection of the NO dayglow in the Martian atmosphere using limb observations by the Imaging Ultraviolet Spectrograph (IUVS) on the MAVEN spacecraft. The detection is enabled by the spectral modeling and removal of the carbon monoxide Cameron bands, which dominate the MUV limb spectra. We focus on the spectral region between 213.0-225.5 nm, where three NO gamma bands emit. We will infer NO densities from the dayglow spectra and compare our observations with predictions from a photochemical model. We will discuss the implications, particularly in the context of previous in situ measurements. [less ▲]

Detailed reference viewed: 9 (0 ULiège)
See detailMars topographic clouds: MAVEN/IUVS observations and LMD MGCM predictions
Schneider, Nicholas M.; Connour, Kyle; Forget, Francois et al

Conference (2017, October 01)

The Imaging Ultraviolet Spectrograph (IUVS) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft takes mid-UV spectral images of the Martian atmosphere. From these apoapse disk ... [more ▼]

The Imaging Ultraviolet Spectrograph (IUVS) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft takes mid-UV spectral images of the Martian atmosphere. From these apoapse disk images, information about clouds and aerosols can be retrieved and comprise the only MAVEN observations of topographic clouds and cloud morphologies. Measuring local time variability of large-scale recurring cloud features is made possible with MAVEN’s ~4.5-hour elliptical orbit, something not possible with sun-synchronous orbits. We have run the LMD MGCM (Mars global circulation model) at 1° x 1° resolution to simulate water ice cloud formation with inputs consistent with observing parameters and Mars seasons. Topographic clouds are observed to form daily during the late mornings of northern hemisphere spring and this phenomenon recurs until late summer (Ls = 160°), after which topographic clouds wane in thickness. By northern fall, most topographic clouds cease to form except over Arsia Mons and Pavonis Mons, where clouds can still be observed. Our data show moderate cloud formation over these regions as late as Ls = 220°, something difficult for the model to replicate. Previous studies have shown that models have trouble simulating equatorial cloud thickness in combination with a realistic amount of water vapor and not-too-thick polar water ice clouds, implying aspects of the water cycle are not fully understood. We present data/model comparisons as well as further refinements on parameter inputs based on IUVS observations. [less ▲]

Detailed reference viewed: 11 (0 ULiège)
See detailFirst Retrieval of Thermospheric Carbon Monoxide From Mars Dayglow Observations
Evans, J. Scott; Stevens, Michael H.; Jain, Sonal et al

Conference (2017, October 01)

As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By ... [more ▼]

As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By linking CO density distributions to dynamical wind patterns, the structure and variability of the atmosphere will be better understood. Direct measurements of CO can therefore provide insight into the magnitude and pattern of winds and provide a metric for studying the response of the atmosphere to solar forcing. In addition, CO measurements can help solve outstanding photochemical modeling problems in explaining the abundance of CO at Mars. CO is directly observable by electron impact excitation and solar resonance fluorescence emissions in the far-ultraviolet (FUV). The retrieval of CO from solar fluorescence was first proposed over 40 years ago, but has been elusive at Mars due to significant spectral blending. However, by simulating the spectral shape of each contributing emission feature, electron impact excitation and solar fluorescence brightnesses can be extracted from the composite spectrum using a multiple linear regression approach. We use CO Fourth Positive Group (4PG) molecular band emission observed on the limb (130 - 200 km) by the Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft over both northern and southern hemispheres from October 2014 to December 2016. We present the first direct retrieval of CO densities by FUV remote sensing in the upper atmosphere of Mars. Atmospheric composition is inferred using the terrestrial Atmospheric Ultraviolet Radiance Integrated Code adapted to the Martian atmosphere. We investigate the sensitivity of CO density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our results to predictions from the Mars Global Ionosphere-Thermosphere Model as well as in situ measurements by the Neutral Gas and Ion Mass Spectrometer on MAVEN and quantify any differences. [less ▲]

Detailed reference viewed: 16 (0 ULiège)
See detailMars’ seasonal mesospheric transport seen through nitric oxide nightglow
Milby, Zachariah; Stiepen, Arnaud ULiege; Jain, Sonal et al

Conference (2017, October 01)

We analyze the ultraviolet nightglow in the atmosphere of Mars through nitric oxide (NO) δ and γ band emissions as observed by the Imaging UltraViolet Spectrograph (IUVS) instrument onboard the Mars ... [more ▼]

We analyze the ultraviolet nightglow in the atmosphere of Mars through nitric oxide (NO) δ and γ band emissions as observed by the Imaging UltraViolet Spectrograph (IUVS) instrument onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft when it is at apoapse and periapse.In the dayside thermosphere of Mars, solar extreme-ultraviolet radiation dissociates CO[SUB]2[/SUB] and N[SUB]2[/SUB] molecules. O([SUP]3[/SUP]P) and N([SUP]4[/SUP]S) atoms are carried from the dayside to the nightside by the day-night hemispheric transport process, where they descend through the nightside mesosphere and can radiatively recombine to form NO(C[SUP]2[/SUP]Π). The excited molecules rapidly relax by emitting photons in the UV δ and γ bands. These emissions are indicators of the N and O atom fluxes from the dayside to Mars’ nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017).Observations of these emissions are gathered from a large dataset spanning different seasonal conditions.We present discussion on the variability in the brightness and altitude of the emission with season, geographical position (longitude), and local time, along with possible interpretation by local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves forcing longitudinal variability and data-to-model comparisons indicating a wave-3 structure in Mars’ nightside mesosphere. Quantitative comparison with calculations of the Laboratoire de Météorologie Dynamique-Mars Global Climate Model (LMD-MGCM) suggests the model reproduces both the global trend of NO nightglow emission and its seasonal variation. However, it also indicates large discrepancies, with the emission up to a factor 50 times fainter in the model, suggesting that the predicted transport is too efficient toward the night winter pole in the thermosphere by ˜20° latitude to the north.These questions are now addressed through an extensive dataset of disk images, in complement to improved simulations of the LMD-MGCM and the Mars Global Ionosphere-Thermosphere Model (MGITM) models. [less ▲]

Detailed reference viewed: 11 (1 ULiège)
See detailMars atmospheric escape constrained using MAVEN IUVS coronal observations
Chaffin, Michael S.; Deighan, Justin; Chaufray, Jean-Yves et al

in AAS/Division for Planetary Sciences Meeting Abstracts (2015, November 01)

Every planetary atmosphere is capped by a corona: an extended, extremely tenuous region where collisions are negligible and particles follow ballistic trajectories. At Mars, the corona is especially ... [more ▼]

Every planetary atmosphere is capped by a corona: an extended, extremely tenuous region where collisions are negligible and particles follow ballistic trajectories. At Mars, the corona is especially extended due to the low gravity of the planet, and a large number of coronal particles are on escaping trajectories. Such escape has played a critical role in the history of the Mars system, likely removing a substantial fraction of the water initially present on the planet, but the mechanism and magnitude of this escape remains poorly constrained. Currently in orbit at Mars, MAVEN's Imaging Ultraviolet Spectrograph (IUVS) is mapping the distribution of oxygen and hydrogen above 200 km at a high spatial and temporal cadence, revealing a dynamic corona in unprecedented detail. Results will be presented demonstrating that the H in the corona is not spherically symmetric in its distribution, and can potentially be used as a tracer of thermospheric general circulation; and that non-thermal "hot" O (in contrast with more spatially confined "cold" thermal O) is ionospherically sourced with a characteristic energy of 1.1 eV and responds to solar EUV forcing. These results will be interpreted in terms of their impact on our current understanding of how atmospheric escape operates today. We will also discuss how these processes may have acted in the past to deplete Mars' initial water inventory, potentially altering the redox balance of the planet and atmosphere through differential escape of H and O. [less ▲]

Detailed reference viewed: 5 (0 ULiège)
Full Text
Peer Reviewed
See detailMAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars
Schneider, Nick; Deighan, Justin; Stewart, Ian et al

in Geophysical Research Letters (2015)

We report the detection of intense emission from magnesium and iron in Mars' atmosphere caused by a meteor shower following Comet Siding Spring's close encounter with Mars. The observations were made with ... [more ▼]

We report the detection of intense emission from magnesium and iron in Mars' atmosphere caused by a meteor shower following Comet Siding Spring's close encounter with Mars. The observations were made with the Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft orbiting Mars. Ionized magnesium caused the brightest emission from the planet's atmosphere for many hours, resulting from resonant scattering of solar ultraviolet light. Modeling suggests a substantial fluence of low-density dust particles 1–100 µm in size, with the large amount and small size contrary to predictions. The event created a temporary planet-wide ionospheric layer below Mars' main dayside ionosphere. The dramatic meteor shower response at Mars is starkly different from the case at Earth, where a steady state metal layer is always observable but perturbations caused by even the strongest meteor showers are challenging to detect. [less ▲]

Detailed reference viewed: 15 (3 ULiège)
Full Text
Peer Reviewed
See detailThe production of Titan's ultraviolet nitrogen airglow
Stevens, Michael H; Gustin, Jacques ULiege; Ajello, Joseph M et al

in Journal of Geophysical Research. Space Physics (2011), 116

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb in the extreme ultraviolet (EUV) and far ultraviolet (FUV) on 22 June 2009 from a mean distance of 23 Titan radii. These ... [more ▼]

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb in the extreme ultraviolet (EUV) and far ultraviolet (FUV) on 22 June 2009 from a mean distance of 23 Titan radii. These high-quality observations reveal the same EUV and FUV emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N[SUB]2[/SUB]) as found on Earth. We investigate both of these solar driven processes with a terrestrial airglow model adapted to Titan and find that total predicted radiances for the two brightest N[SUB]2[/SUB] band systems agree with the observed peak radiances to within 5%. Using N[SUB]2[/SUB] densities constrained from in situ observations by the Ion Neutral Mass Spectrometer on Cassini, the altitude of the observed limb peak of the EUV and FUV emission bands is between 840 and 1060 km and generally consistent with model predictions. We find no evidence for carbon emissions in Titan's FUV airglow in contrast to previous Titan airglow studies using UVIS data. In their place, we identify several vibrational bands from the N[SUB]2[/SUB] Vegard-Kaplan system arising from photoelectron impact with predicted peak radiances in agreement with observations. These Titan UV airglow observations are therefore comprised of emissions arising only from solar processes on N[SUB]2[/SUB] with no detectable magnetospheric contribution. Weaker EUV Carroll-Yoshino N[SUB]2[/SUB] bands within the v′ = 3, 4, and 6 progressions between 870 and 1020 Å are underpredicted by about a factor of five while the (0,1) band near 980 Å is overpredicted by about a factor of three. [less ▲]

Detailed reference viewed: 22 (2 ULiège)
Full Text
Peer Reviewed
See detailTitan airglow spectra from Cassini Ultraviolet Imaging Spectrograph (UVIS): EUV analysis
Ajello, Joseph M.; Stevens, Michael H.; Stewart, Ian et al

in Geophysical Research Letters (2007), 34

We present the first UV airglow observations of Titan's atmosphere by the Ultraviolet Imaging Spectrograph (UVIS) on Cassini. Using one spectral channel in the EUV from 561-1182 Å and one in the FUV from ... [more ▼]

We present the first UV airglow observations of Titan's atmosphere by the Ultraviolet Imaging Spectrograph (UVIS) on Cassini. Using one spectral channel in the EUV from 561-1182 Å and one in the FUV from 1115-1913 Å, UVIS observed the disk on 13 December, 2004 at low solar activity. The EUV spectrum consists of three band systems of N[SUB]2[/SUB] (b [SUP]1[/SUP]∏[SUB]u[/SUB], b' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP], c[SUB]4[/SUB]' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP] -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP]), while the FUV spectrum consists of one (a [SUP]1[/SUP]∏[SUB]g[/SUB] -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP]). Both the EUV and FUV spectra contain many N I and N II multiplets that are produced primarily by photodissociative ionization. Spectral intensities of the N[SUB]2[/SUB] c[SUB]4[/SUB]' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP](v' = 0) -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP](v'' = 0-2) progression from 950-1010 Å are resolved for the first time. The UVIS observations reveal that the c[SUB]4[/SUB]' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP](0) -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP] (0) vibrational band near 958 Å is weak and undetectable, and that N I multiplets near 953.2 and 964.5 Å are present instead. Magnetospheric particle excitation may be weak or sporadic, since the nightside EUV spectrum on this orbit shows no observable nitrogen emission features and only H Ly-β. [less ▲]

Detailed reference viewed: 13 (0 ULiège)