References of "Hofmann, K.-H"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system (Corrigendum)
Maire, A.-L.; Skemer, A. J.; Hinz, P. M. et al

in Astronomy and Astrophysics (2015), 579

The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system ... [more ▼]

The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia. [less ▲]

Detailed reference viewed: 7 (2 ULg)
Full Text
Peer Reviewed
See detailThe LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system
Maire, A.-L.; Skemer, A. J.; Hinz, P. M. et al

in Astronomy and Astrophysics (2015), 576

Context. Astrometric monitoring of directly imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly imaged planets have long orbital periods (>20 AU ... [more ▼]

Context. Astrometric monitoring of directly imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the Large Binocular Telescope is being used for the LBT Exozodi Exoplanet Common Hunt (LEECH) survey to search for and characterize young and adolescent exoplanets in L' band (3.8 μm), including their system architectures. <BR /> Aims: We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed for the system, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet inside the known planets. <BR /> Methods: We use observations of HR 8799 and the Θ[SUP]1[/SUP] Ori C field obtained during the same run in October 2013. <BR /> Results: We first characterize the distortion of LMIRCam. We determine a platescale and a true north orientation for the images of 10.707 ± 0.012 mas/pix and -0.430 ± 0.076°, respectively. The errors on the platescale and true north orientation translate into astrometric accuracies at a separation of 1'' of 1.1 mas and 1.3 mas, respectively. The measurements for all planets agree within 3σ with a predicted ephemeris. The orbital fitting based on the new astrometric measurements favors an architecture for the planetary system based on 8:4:2:1 mean motion resonance. The detection limits allow us to exclude a fifth planet slightly brighter or more massive than HR 8799 b at the location of the 2:1 resonance with HR 8799 e (~9.5 AU) and about twice as bright as HR 8799 cde at the location of the 3:1 resonance with HR 8799 e (~7.5 AU). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
See detailMatisse
Lopez, B.; Lagarde, S.; Wolf, S. et al

in Moorwood, 1 (Ed.) Science with the VLT in the ELT Era (2009)

MATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase relations and ... [more ▼]

MATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase relations and thus offer an efficient capability for image reconstruction in the L, M and N bands of the mid-infrared domain. [less ▲]

Detailed reference viewed: 15 (1 ULg)
Full Text
See detailMATISSE Science Cases
Wolf, S.; Lopez, B.; Jaffe, W. et al

in Moorwood, A. (Ed.) Science with the VLT in the ELT Era (2009)

MATISSE is foreseen as a mid-infrared spectro-interferometric instrument combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase ... [more ▼]

MATISSE is foreseen as a mid-infrared spectro-interferometric instrument combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase relations and thus offer an efficient capability for image reconstruction. In addition to this, MATISSE will open 2 new observing windows at the VLTI: the L and M band in addition to the N band. Furthermore, the instrument will offer the possibility to perform simultaneous observations in separate bands. MATISSE will also provide several spectroscopic modes. In summary, MATISSE can be seen as a successor of MIDI by providing imaging capabilities in the mid-infrared domain (for a more detailed description of MATISSE see Lopez et al., these proceedings). [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
See detailMilli-arcsecond Astrophysics with VSI, the VLTI Spectro-imager in the ELT Era
Malbet, F.; Buscher, D.; Weigelt, G. et al

in Moorwood, Alan (Ed.) Science with the VLT in the ELT Era (2009)

Nowadays, compact sources relatively warm like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be ... [more ▼]

Nowadays, compact sources relatively warm like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be investigated at milli-arcsecond scales only with the VLT in its interferometric mode. We propose a spectro-imager, named VSI (VLTI spectro-imager), which is capable to probe these sources both over spatial and spectral scales in the near-infrared domain. This instrument will provide information complementary to what is obtained at the same time with ALMA at different wavelengths and the extreme large telescopes. [less ▲]

Detailed reference viewed: 63 (12 ULg)
Full Text
See detailVSI: the VLTI spectro-imager
Malbet, F.; Buscher, D.; Weigelt, G. et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at ... [more ▼]

The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at angular resolutions down to 1.1 milliarcsecond and spectral resolutions up to R = 12000. Targets as faint as K = 13 will be imaged without requiring a brighter nearby reference object; fainter targets can be accessed if a suitable reference is available. The unique combination of high-dynamic-range imaging at high angular resolution and high spectral resolution enables a scientific program which serves a broad user community and at the same time provides the opportunity for breakthroughs in many areas of astrophysics. The high level specifications of the instrument are derived from a detailed science case based on the capability to obtain, for the first time, milliarcsecond-resolution images of a wide range of targets including: probing the initial conditions for planet formation in the AU-scale environments of young stars; imaging convective cells and other phenomena on the surfaces of stars; mapping the chemical and physical environments of evolved stars, stellar remnants, and stellar winds; and disentangling the central regions of active galactic nuclei and supermassive black holes. VSI will provide these new capabilities using technologies which have been extensively tested in the past and VSI requires little in terms of new infrastructure on the VLTI. At the same time, VSI will be able to make maximum use of new infrastructure as it becomes available; for example, by combining 4, 6 and eventually 8 telescopes, enabling rapid imaging through the measurement of up to 28 visibilities in every wavelength channel within a few minutes. The current studies are focused on a 4-telescope version with an upgrade to a 6-telescope one. The instrument contains its own fringe tracker and tip-tilt control in order to reduce the constraints on the VLTI infrastructure and maximize the scientific return. [less ▲]

Detailed reference viewed: 74 (7 ULg)