References of "Hochedez, J. F"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe DynaMICCS perspective. A mission for a complete and continuous view of the Sun dedicated to magnetism, space weather and space climate
Turck-Chièze, S.; Lamy, P.; Carr, C. et al

in Experimental Astronomy (2009), 23

The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative ... [more ▼]

The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative/convective zone interface layers, the photosphere/chromosphere layers and the low corona. The mission delivers data and knowledge that no other known mission provides for understanding space weather and space climate and for advancing stellar physics (internal dynamics) and fundamental physics (neutrino properties, atomic physics, gravitational moments...). The science objectives are achieved using Doppler and magnetic measurements of the solar surface, helioseismic and coronographic measurements, solar irradiance at different wavelengths and in-situ measurements of plasma/energetic particles/magnetic fields. The DynaMICCS payload uses an original concept studied by Thalès Alenia Space in the framework of the CNES call for formation flying missions: an external occultation of the solar light is obtained by putting an occulter spacecraft 150 m (or more) in front of a second spacecraft. The occulter spacecraft, a LEO platform of the mini sat class, e.g. PROTEUS, type carries the helioseismic and irradiance instruments and the formation flying technologies. The latter spacecraft of the same type carries a visible and infrared coronagraph for a unique observation of the solar corona and instrumentation for the study of the solar wind and imagers. This mission must guarantee long (one 11-year solar cycle) and continuous observations (duty cycle > 94%) of signals that can be very weak (the gravity mode detection supposes the measurement of velocity smaller than 1 mm/s). This assumes no interruption in observation and very stable thermal conditions. The preferred orbit therefore is the L1 orbit, which fits these requirements very well and is also an attractive environment for the spacecraft due to its low radiation and low perturbation (solar pressure) environment. This mission is secured by instrumental R and D activities during the present and coming years. Some prototypes of different instruments are already built (GOLFNG, SDM) and the performances will be checked before launch on the ground or in space through planned missions of CNES and PROBA ESA missions (PICARD, LYRA, maybe ASPIICS). [less ▲]

Detailed reference viewed: 42 (12 ULg)
Full Text
Peer Reviewed
See detailEIT and LASCO Observations of the Initiation of a Coronal Mass Ejection
Dere, K. P.; Brueckner, G. E.; Howard, R. A. et al

in Solar Physics (1997), 175

We present the first observations of the initiation of a coronal mass ejection (CME) seen on the disk of the Sun. Observations with the EIT experiment on SOHO show that the CME began in a small volume and ... [more ▼]

We present the first observations of the initiation of a coronal mass ejection (CME) seen on the disk of the Sun. Observations with the EIT experiment on SOHO show that the CME began in a small volume and was initially associated with slow motions of prominence material and a small brightening at one end of the prominence. Shortly afterward, the prominence was accelerated to about 100 km s[SUP]-1[/SUP] and was preceded by a bright loop-like structure, which surrounded an emission void, that traveled out into the corona at a velocity of 200 400 km s[SUP]-1[/SUP]. These three components, the prominence, the dark void, and the bright loops are typical of CMEs when seen at distance in the corona and here are shown to be present at the earliest stages of the CME. The event was later observed to traverse the LASCO coronagraphs fields of view from 1.1 to 30 Ro. Of particular interest is the fact that this large-scale event, spanning as much as 70 deg in latitude, originated in a volume with dimensions of roughly 35" (2.5 x 10[SUP]4[/SUP] km). Further, a disturbance that propagated across the disk and a chain of activity near the limb may also be associated with this event as well as a considerable degree of activity near the west limb. [less ▲]

Detailed reference viewed: 37 (11 ULg)
Full Text
Peer Reviewed
See detailEIT Observations of the Extreme Ultraviolet Sun
Moses, D.; Clette, Frédéric; Delaboudinière, J.-P. et al

in Solar Physics (1997), 175

The Extreme Ultraviolet Imaging Telescope (EIT) on board the SOHO spacecraft has been operational since 2 January 1996. EIT observes the Sun over a 45 x 45 arc min field of view in four emission line ... [more ▼]

The Extreme Ultraviolet Imaging Telescope (EIT) on board the SOHO spacecraft has been operational since 2 January 1996. EIT observes the Sun over a 45 x 45 arc min field of view in four emission line groups: Feix, x, Fexii, Fexv, and Heii. A post-launch determination of the instrument flatfield, the instrument scattering function, and the instrument aging were necessary for the reduction and analysis of the data. The observed structures and their evolution in each of the four EUV bandpasses are characteristic of the peak emission temperature of the line(s) chosen for that bandpass. Reports on the initial results of a variety of analysis projects demonstrate the range of investigations now underway: EIT provides new observations of the corona in the temperature range of 1 to 2 MK. Temperature studies of the large-scale coronal features extend previous coronagraph work with low-noise temperature maps. Temperatures of radial, extended, plume-like structures in both the polar coronal hole and in a low latitude decaying active region were found to be cooler than the surrounding material. Active region loops were investigated in detail and found to be isothermal for the low loops but hottest at the loop tops for the large loops. [less ▲]

Detailed reference viewed: 23 (6 ULg)
Full Text
Peer Reviewed
See detailEIT: Extreme-Ultraviolet Imaging Telescope for the SOHO Mission
Delaboudinière, J.-P.; Artzner, G. E.; Brunaud, J. et al

in Solar Physics (1995), 162

The Extreme-ultraviolet Imaging Telescope (EIT) will provide wide-field images of the corona and transition region on the solar disc and up to 1.5 Ro above the solar limb. Its normal incidence multilayer ... [more ▼]

The Extreme-ultraviolet Imaging Telescope (EIT) will provide wide-field images of the corona and transition region on the solar disc and up to 1.5 Ro above the solar limb. Its normal incidence multilayer-coated optics will select spectral emission lines from Fe IX (171 Å), Fe XII (195 Å), Fe XV (284 Å), and He II (304 Å) to provide sensitive temperature diagnostics in the range from 6 × 10[SUP]4[/SUP] K to 3 × 10[SUP]6[/SUP] K. The telescope has a 45 x 45 arcmin field of view and 2.6 arcsec pixels which will provide approximately 5-arcsec spatial resolution. The EIT will probe the coronal plasma on a global scale, as well as the underlying cooler and turbulent atmosphere, providing the basis for comparative analyses with observations from both the ground and other SOHO instruments. This paper presents details of the EIT instrumentation, its performance and operating modes. [less ▲]

Detailed reference viewed: 48 (6 ULg)