References of "Hippert, F"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailVibrational properties and stabilization mechanism of the amorphous phase of doped GeTe
Raty, Jean-Yves ULg; Noé, Pierre; Ghezzi, G. et al

in Physical Review B (2013), 88(1),

Doping chalcogenide phase change materials was shown to improve the stability of the amorphous phase at high temperature and to strongly increase the crystallization temperature. In this work, we use ab ... [more ▼]

Doping chalcogenide phase change materials was shown to improve the stability of the amorphous phase at high temperature and to strongly increase the crystallization temperature. In this work, we use ab initio molecular dynamics together with Fourier transform infrared spectroscopy to address the stabilization of GeTe doped with nitrogen and carbon in the amorphous phase. The comparison between the simulation and experimental results allows in-depth understanding of the mechanisms. The inclusion of C and N leads to an increase in high frequency vibrational modes and to a lowering of the boson peak intensity. The reduction of the density of floppy vibrational modes and the computed increase of the mechanical rigidity are responsible for the higher activation energy for crystallization. The mechanism described here could apply more generally to stabilize other Ge-Sb-Te phase change materials and ionocovalent glasses at high temperature. © 2013 American Physical Society. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
Peer Reviewed
See detailPhase Change Memories challenges: A material and process perspective
Maitrejean, S.; Ghezzi, G.; Gourvest, E. et al

in 2012 IEEE International Interconnect Technology Conference, IITC 2012 (2012)

Among all the new memories concepts, Phase Change Memories (PCM) is one of the most promising. However, various challenges remain. This paper reviews the materials and processes required to face these ... [more ▼]

Among all the new memories concepts, Phase Change Memories (PCM) is one of the most promising. However, various challenges remain. This paper reviews the materials and processes required to face these challenges. As an example, attention will be made on the effect of Phase change material composition on stability of the amorphous phase i.e. on the retention of the information. Additionally, it is showed how specific processes such as CVD or ALD can be developed in order to minimize the current required to amorphize the phase change material i.e. to reset the device. Finally, with the perspectives of the advanced integration nodes, experimental results on the effect of scaling on phase transformation are presented and discussed. © 2012 IEEE. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailTi impact in C-doped phase-change memories compliant to Pb-free soldering reflow
Perniola, L.; Noe, Pascal ULg; Hubert, Q. et al

in Technical Digest - International Electron Devices Meeting, IEDM (2012)

In this paper, we present a thorough physical-chemical analysis of an engineered PCM stack, where the integration of C-doping and the use of a Ti top layer allow obtaining an Amorphous As-Deposited (A-AD ... [more ▼]

In this paper, we present a thorough physical-chemical analysis of an engineered PCM stack, where the integration of C-doping and the use of a Ti top layer allow obtaining an Amorphous As-Deposited (A-AD) phase stable against Back End-Of-Line (BEOL) thermal budget. This PCM stack is then integrated in devices, which are extensively tested in order to validate a novel pre-coding technique compliant to the Pb-free soldering reflow issue. Finally, an original design to optimize the distribution dispersion is presented. © 2012 IEEE. [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailEffect of carbon doping on the structure of amorphous GeTe phase change material
Ghezzi, G. E.; Raty, Jean-Yves ULg; Maitrejean, S. et al

in Applied Physics Letters (2011), 99(15), 1519063-15190631519063

Carbon-doped GeTe is a promising material for use in phase change memories since the addition of C increases the stability of the amorphous phase. By combining x-ray total scattering experiments and ab ... [more ▼]

Carbon-doped GeTe is a promising material for use in phase change memories since the addition of C increases the stability of the amorphous phase. By combining x-ray total scattering experiments and ab initio molecular dynamics, we show that carbon deeply modifies the structure of the amorphous phase through long carbon chains and tetrahedral and triangular units centered on carbon. A clear signature of these units is the appearance of an additional interatomic distance, around 3.3 Aring in the measured pair distribution function. Besides, the first Ge-Ge and Ge-Te distances are almost not affected by doping. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
Peer Reviewed
See detailStructural and vibrational study of the negative thermal expansion in liquid As2Te3
Otjacques, C.; Raty, Jean-Yves ULg; Hippert, F. et al

in Physical Review. B, Condensed Matter and Materials Physics (2010), 82(5), 0542029-05420290542029

We present an experimental and theoretical study of liquid As 2Te 3. This alloy exhibits a negative thermal expansion (NTE) in a 250 K range above the melting temperature T m = 654 K. We evidence the ... [more ▼]

We present an experimental and theoretical study of liquid As 2Te 3. This alloy exhibits a negative thermal expansion (NTE) in a 250 K range above the melting temperature T m = 654 K. We evidence the changes in As 2Te 3 structure by measuring neutron-diffraction spectra at five temperatures in the NTE range and perform first principles molecular dynamics simulations at the same temperatures and densities to study the local order evolution in the liquid. Our calculated structures show an increase in the coordination numbers and a symmetrization of the first neighbors shell around atoms when the temperature rises. To confirm these results, we performed inelastic neutron scattering to obtain the vibrational density of state (VDOS) along the NTE. We see a clear change in the VDOS, consisting in a redshift of the highest frequencies with temperature. Finally, electrical conductivity evolution was obtained from the simulated structures, to compare with the semiconductor to metal transition measured experimentally. [less ▲]

Detailed reference viewed: 27 (6 ULg)