References of "Herkenne, Stéphanie"
     in
Bookmark and Share    
Peer Reviewed
See detailGrowth Factors-Induced Angiogenesis Requires uPAR on Endothelial Cells
Paques, Cécile ULg; Herkenne, Stéphanie ULg; Pollenus, Thomas et al

Poster (2014, May)

Detailed reference viewed: 14 (3 ULg)
Full Text
Peer Reviewed
See detailPAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin.
Bajou, Khalid ULg; Herkenne, Stéphanie ULg; Thijssen, Victor L. et al

in Nature Medicine (2014), sous presse

The N-terminal fragment of prolactin (16K PRL) inhibits tumor growth by impairing angiogenesis, but the underlying mechanisms are unknown. Here, we found that 16K PRL binds the fibrinolytic inhibitor ... [more ▼]

The N-terminal fragment of prolactin (16K PRL) inhibits tumor growth by impairing angiogenesis, but the underlying mechanisms are unknown. Here, we found that 16K PRL binds the fibrinolytic inhibitor plasminogen activator inhibitor-1 (PAI-1), which is known to contextually promote tumor angiogenesis and growth. Loss of PAI-1 abrogated the antitumoral and antiangiogenic effects of 16K PRL. PAI-1 bound the ternary complex PAI-1-urokinase-type plasminogen activator (uPA)-uPA receptor (uPAR), thereby exerting antiangiogenic effects. By inhibiting the antifibrinolytic activity of PAI-1, 16K PRL also protected mice against thromboembolism and promoted arterial clot lysis. Thus, by signaling through the PAI-1-uPA-uPAR complex, 16K PRL impairs tumor vascularization and growth and, by inhibiting the antifibrinolytic activity of PAI-1, promotes thrombolysis. [less ▲]

Detailed reference viewed: 39 (17 ULg)
Full Text
Peer Reviewed
See detailThe Antiangiogenic 16K Prolactin Impairs Functional Tumor Neovascularization by Inhibiting Vessel Maturation
Nguyen, Ngoc-Quynh-Nhu ULg; Castermans, Karolien; Berndt, Sarah et al

in PLoS ONE (2011), 6(11), 27318-27318

Background: Angiogenesis, the formation of new blood vessels from existing vasculature, plays an essential role in tumor growth, invasion, and metastasis. 16K hPRL, the antiangiogenic 16-kDa N-terminal ... [more ▼]

Background: Angiogenesis, the formation of new blood vessels from existing vasculature, plays an essential role in tumor growth, invasion, and metastasis. 16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology. Methodology/Principal Findings: Here we investigated the effect of 16K hPRL on tumor vessel maturation and on the related signaling pathways. We show that 16K hPRL treatment leads, in a murine B16-F10 tumor model, to a dysfunctional tumor vasculature with reduced pericyte coverage, and disruption of the PDGF-B/PDGFR-B, Ang/Tie2, and Delta/Notch pathways. In an aortic ring assay, 16K hPRL impairs endothelial cell and pericyte outgrowth from the vascular ring. In addition, 16K hPRL prevents pericyte migration to endothelial cells. This event was independent of a direct inhibitory effect of 16K hPRL on pericyte viability, proliferation, or migration. In endothelial cell-pericyte cocultures, we found 16K hPRL to disturb Notch signaling. Conclusions/Significance: Taken together, our data show that 16K hPRL impairs functional tumor neovascularization by inhibiting vessel maturation and for the first time that an endogenous antiangiogenic agent disturbs Notch signaling. These findings provide new insights into the mechanisms of 16K hPRL action and highlight its potential for use in anticancer therapy. [less ▲]

Detailed reference viewed: 89 (20 ULg)
Peer Reviewed
See detailThe antiangiogenic 16K prolactin disturbs functional tumor neovascularization by affecting vessel maturation
Nguyen, Ngoc-Quynh-Nhu ULg; Castermans, Karolien; Berndt, Sarah et al

Poster (2011, May)

16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology. Here we investigated the effect of 16K ... [more ▼]

16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology. Here we investigated the effect of 16K hPRL on tumor vessel maturation and on the related signaling pathways. We show that 16K hPRL treatment leads, in a murine B16-F10 tumor model, to a dysfunctional tumor vasculature with reduced pericyte coverage, and disruption of the PDGF-B/PDGFR-B, Ang/Tie2, and Delta/Notch pathways. In an aortic ring assay, 16K hPRL impairs endothelial cell and pericyte outgrowth from the vascular ring. In addition, 16K hPRL prevents pericyte migration to endothelial cells. This event was independent of a direct inhibitory effect of 16K hPRL on pericyte viability, proliferation, or migration. In endothelial cell-pericyte cocultures, we found 16K hPRL to disturb Notch signaling, this being the first time such an effect is observed with an endogenous antiangiogenic agent. These findings provide new insights into the mechanisms of 16K hPRL action and highlight its potential for use in anticancer therapy. [less ▲]

Detailed reference viewed: 35 (5 ULg)
Full Text
Peer Reviewed
See detailThe Angiostatic Protein 16K Human Prolactin Significantly Prevents Tumor-Induced Lymphangiogenesis by Affecting Lymphatic Endothelial Cells.
Kinet, Virginie; Castermans, K; Herkenne, Stéphanie ULg et al

in Endocrinology (2011)

The 16-kDa angiostatic N-terminal fragment of human prolactin (16K hPRL) has been reported to be a new potent anticancer compound. This protein has already proven its efficiency in several mouse tumor ... [more ▼]

The 16-kDa angiostatic N-terminal fragment of human prolactin (16K hPRL) has been reported to be a new potent anticancer compound. This protein has already proven its efficiency in several mouse tumor models in which it prevented tumor-induced angiogenesis and delayed tumor growth. In addition to angiogenesis, tumors also stimulate the formation of lymphatic vessels, which contribute to tumor cell dissemination and metastasis. However, the role of 16K hPRL in tumor-induced lymphangiogenesis has never been investigated. We establish in vitro that 16K hPRL induces apoptosis and inhibits proliferation, migration, and tube formation of human dermal lymphatic microvascular endothelial cells. In addition, in a B16F10 melanoma mouse model, we found a decreased number of lymphatic vessels in the primary tumor and in the sentinel lymph nodes after 16K hPRL treatment. This decrease is accompanied by a significant diminished expression of lymphangiogenic markers in primary tumors and sentinel lymph nodes as determined by quantitative RT-PCR. These results suggest, for the first time, that 16K hPRL is a lymphangiostatic as well as an angiostatic agent with antitumor properties. [less ▲]

Detailed reference viewed: 70 (6 ULg)