References of "Henrist, Catherine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailChitosan enriched three-dimensional matrix reduces inflammatory and catabolic mediators production by human chondrocytes
Oprenyeszk, Frédéric ULg; Sanchez, Christelle ULg; Dubuc, Jean-Emile et al

in PLoS ONE (2015), 10(5),

This in vitro study investigated the metabolism of human osteoarthritic (OA) chondrocytes encapsulated in a spherical matrix enriched of chitosan. Human OA chondrocytes were encapsulated and cultured for ... [more ▼]

This in vitro study investigated the metabolism of human osteoarthritic (OA) chondrocytes encapsulated in a spherical matrix enriched of chitosan. Human OA chondrocytes were encapsulated and cultured for 28 days either in chitosan-alginate beads or in alginate beads. The beads were formed by slowly passed dropwise either the chitosan 0.6%- alginate 1.2% or the alginate 1.2% solution through a syringe into a 102 mM CaCl2 solution. Beads were analyzed histologically after 28 days. Interleukin (IL)-6 and -8, prostaglandin (PG) E2, matrix metalloproteinases (MMPs), hyaluronan and aggrecan were quantified directly in the culture supernatant by specific ELISA and nitric oxide (NO) by using a colorimetric method based on the Griess reaction. Hematoxylin and eosin staining showed that chitosan was homogeneously distributed through the matrix and was in direct contact with chondrocytes. The production of IL-6, IL-8 and MMP-3 by chondrocytes significantly decreased in chitosan-alginate beads compared to alginate beads. PGE2 and NO decreased also significantly but only during the first three days of culture. Hyaluronan and aggrecan production tended to increase in chitosan-alginate beads after 28 days of culture. Chitosan-alginate beads reduced the production of inflammatory and catabolic mediators by OA chondrocytes and tended to stimulate the synthesis of cartilage matrix components. These particular effects indicate that chitosan-alginate beads are an interesting scaffold for chondrocytes encapsulation before transplantation to repair cartilage defects. [less ▲]

Detailed reference viewed: 22 (5 ULg)
Full Text
See detailTiO2 templated films used as photoelectrode for solid-state DSSC applications: Study of the solid electrolyte infiltration by Rutherford Backscattering Spectrometry
Dewalque, Jennifer ULg; Colson, Pierre ULg; Mathis, François et al

Poster (2015, May 10)

Liquid-state dye-sensitized solar cells can suffer from electrolyte evaporation and leakage. Therefore solid-state hole transporting materials are investigated as alternative electrolyte materials ... [more ▼]

Liquid-state dye-sensitized solar cells can suffer from electrolyte evaporation and leakage. Therefore solid-state hole transporting materials are investigated as alternative electrolyte materials. However, in solid-state dye-sensitized solar cells, optimal TiO2 films thickness is limited to a few microns allowing the adsorption of only a low quantity of photoactive dye and thus leading to poor light harvesting and low conversion efficiency. In order to overcome this limitation, high surface area templated films are investigated as alternative to nanocrystalline films prepared by doctor-blade or screen-printing. Moreover, templating is expected to improve the pore accessibility what would promote the solid electrolyte penetration inside the porous network, making possible efficient charge transfers. In this study, films prepared from different structuring agents are discussed in terms of microstructural properties (porosity, crystallinity) as well as effect on the dye loading and Spiro-OMeTAD (2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)9,9'-spirobifluorene) solid electrolyte filling. Different techniques such as transmission electron microscopy (TEM), atmospheric poroellipsometry (AEP) and UV-visible absorption spectroscopy (UV-vis.) have been used to describe the microstructural features of the films. Besides, we have implemented Rutherford backscattering spectrometry (RBS) as an innovative non-destructive tool to characterize the hole transporting materials infiltration. Templated films show dye loading more than two times higher than nanocrystalline films prepared by doctor-blade or screen-printing and solid electrolyte infiltration up to 88%. [less ▲]

Detailed reference viewed: 38 (3 ULg)
Full Text
See detailComparison of structural features of spin-coated and USP-deposited templated α-Fe2O3films
Toussaint, Caroline ULg; Chatzikyriakou, Daphne; Cloots, Rudi ULg et al

Poster (2015)

Detailed reference viewed: 13 (3 ULg)
Full Text
Peer Reviewed
See detailCombining mesoporosity and Ti-doping in hematite films for water splitting
Toussaint, Caroline ULg; Tran, Hoang Son ULg; Colson, Pierre ULg et al

in Journal of Physical Chemistry C (2015), 119(4), 1642-1650

(Graph Presented). In this study, we report the synthesis of Ti-doped mesoporous hematite films by soft-templating for application as photoanodes in the photoelectrolysis of water (water splitting ... [more ▼]

(Graph Presented). In this study, we report the synthesis of Ti-doped mesoporous hematite films by soft-templating for application as photoanodes in the photoelectrolysis of water (water splitting). Because the activation of the dopant requires a heat treatment at high temperature (≥800°C), it usually results in the collapse of the mesostructure. We have overcome this obstacle by using a temporary SiO2 scaffold to hinder crystallite growth and thereby maintain the mesoporosity. The beneficial effect of the activated dopant has been confirmed by comparing the photocurrent of doped and undoped films treated at different temperatures. The role of the mesostructure was investigated by comparing dense, collapsed, and mesoporous films heated at different temperatures and characterized under front and back illumination. It turns out that the preservation of the mesotructure enables a better penetration of the electrolyte into the film and therefore reduces the distance that the photogenerated holes have to travel to reach the electrolyte. As a result, we found that mesoporous films with dopant activation at 850°C perform better than comparable dense and collapsed films. [less ▲]

Detailed reference viewed: 50 (10 ULg)
Full Text
Peer Reviewed
See detailTiO2 Macroscopic Fibers with Enhanced Photocatalytic Properties Obtained through a Scale-Up Semi-Industrial Process
Kinadjian, Natacha; Le Bechec, Mickael; Henrist, Catherine ULg et al

in Advanced Engineering Materials (2015), 17(1), 36-44

Detailed reference viewed: 9 (0 ULg)
See detailElectrografting of polythiophenes on zinc oxide nanorods for photovoltaic cells
Demarteau, Jérémy ULg; Ouhib, Farid ULg; Henrist, Catherine ULg et al

Poster (2014, May 20)

As the rarefaction of fossil energies, photovoltaic cells are certainly amongst the most important energy sources for the future. Our work concentrated on hybrid photovoltaic cells that are based on ... [more ▼]

As the rarefaction of fossil energies, photovoltaic cells are certainly amongst the most important energy sources for the future. Our work concentrated on hybrid photovoltaic cells that are based on organic (polythiophene) and inorganic components (ZnO nanorods). The technology that maximizes the contact area between the two semi-conductor n and p while maintaining two separate components is the interdigital configuration. As the inorganic part, perfectly well aligned zinc oxide (ZnO) 1D nanostructures have been synthesized by hydrothermal growth on ZnO-seeded FTO substrates. SEM, AFM and XRD characterizations evidence patterned well- aligned nanorods with high c-axis, their roughness of surface and the length of their nanostructure. Concerning the organic component, we synthetize polythiophenes based diblock copolymer with high degree of regioregularity and predetermined molecular weight using Grignard Methatis (GRIM) process. Diblock polythiophene based copolymers are of interest because of the possibility of generating multifunctional materials (by associating the specific properties of each block), including their ability for self-assembly into well-defined nanostructures (fibrils or micelles) with controllable dimensions. Poly(3-hexylthiophene) (P3HT) composes the first block and the second block is either a polythiophene bearing an acrylate group on each monomer unit (PAcET), or a polythiophene bearing both acrylate and poly(ethylene glycol) side chains (P(AcET-co-PEGET)). Typically, the acrylates are used to fixe in a covalent way the copolymer to ZnO nanorods, while the PEG grafts are necessary for the solubilisation of the copolymer in the electrografting medium. 1H NMR and DLS characterizations allow us to find the backbone and the micellar structure of the copolymer. Cathodic polarization (electrografting) of ZnO nanorods induces electropolymerization of acrylate groups, leading to an adherent organized film of poly(thiophene)-based micelles. During the illumination tests, we obtained a typical response of a photovoltaic despite the low yields. This promising synthetic route opens exciting perspectives for the production and the electrochemical functionalization of different lengths of ZnO nanowires, which seems to be promising candidate for hybrids photovoltaic cells. [less ▲]

Detailed reference viewed: 41 (9 ULg)
Full Text
See detailInfluence of mesoporosity in hematite films on water splitting efficiency
Toussaint, Caroline ULg; Cloots, Rudi ULg; Henrist, Catherine ULg

Poster (2014)

Solar energy is inexhaustible but variable during the day and the seasons. Photoelectrolysis of water (water splitting) convert this energy into hydrogen to obtain an energy that can be stored and ... [more ▼]

Solar energy is inexhaustible but variable during the day and the seasons. Photoelectrolysis of water (water splitting) convert this energy into hydrogen to obtain an energy that can be stored and transported on demand. Hematite is a promising material for the photoanode in water splitting because of its high stability in water, cheapness, abundance and its band gap that enables the absorption of visible light (Eg: 2,1eV). Nevertheless, hematite has also some drawbacks including a short diffusion length of holes and a bad electronic conductivity. We have implemented spin coating and templating to produce doped mesoporous hematite films. The nanostructuration can improve the performances in water splitting by reducing the diffusion length of holes and increasing the specific surface between the film and the electrolyte. To suppress the collapse of the mesoporosity at high temperature (requested for dopant activation), we have used a temporary silica confinement scaffold that reduces the crystallite growth. To show the impact of the nanostructure, we have compared three films (mesoporous, collapsed and dense) in terms of hematite content (elemental analysis), nanostructure (electron microscopy), crystallinity (X-ray diffraction) and water splitting efficiency. We have also test two thermal treatments. This study highlights the effect of the effective interface with the electrolyte, through the preservation or not of open porosity and the different evolutions of the nanostructures as a function of the heat treatment. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailMesoporous amorphous tungsten oxide electrochromic films: a Raman analysis of their good switching behavior
Chatzikyriakou, Dafni ULg; Krins, Natacha ULg; Gilbert, Bernard ULg et al

in Electrochimica Acta (2014), 137

The intercalation and de-intercalation of lithium cations in electrochromic tungsten oxide thin films are significantly influenced by their structural and surface characteristics. In this study, we ... [more ▼]

The intercalation and de-intercalation of lithium cations in electrochromic tungsten oxide thin films are significantly influenced by their structural and surface characteristics. In this study, we prepared two types of amorphous films via the sol-gel technique: one dense and one mesoporous in order to compare their response upon lithium intercalation and de-intercalation. According to chronoamperometric measurements, Li+ intercalates/de-intercalates faster in the mesoporous film (24s/6s) than in the dense film (48s/10s). The electrochemical measurements (cyclic voltammetry and chronoamperometry) also showed worse reversibility for the dense film compared to the mesoporous film, giving rise to important Li+ trapping and remaining coloration of the film. Raman analysis showed that the mesoporous film provides more accessible and various W-O surface bonds for Li+ intercalation. On the contrary, in the first electrochemical insertion and de-insertion in the dense film, Li+ selectively reacts with a few surface W-O bonds and preferentially intercalates into pre-existing crystallites to form stable irreversible LixWO3 bronze. [less ▲]

Detailed reference viewed: 43 (15 ULg)
Full Text
Peer Reviewed
See detailPore-filling of Spiro-OMeTAD determined by Rutherford backscattering spectrometry in templated TiO2 photoelectrodes
Dewalque, Jennifer ULg; Colson, Pierre ULg; Thalluri, Venkata Visveswara Gopala Kris ULg et al

in Organic Electronics (2014), 15

Liquid-state dye-sensitized solar cells can suffer from electrolyte evaporation and leakage. Therefore solid-state hole transporting materials are investigated as alternative electrolyte materials ... [more ▼]

Liquid-state dye-sensitized solar cells can suffer from electrolyte evaporation and leakage. Therefore solid-state hole transporting materials are investigated as alternative electrolyte materials. However, in solid-state dye-sensitized solar cells, optimal TiO2 films thickness is limited to a few microns allowing the adsorption of only a low quantity of photoactive dye and thus leading to poor light harvesting and low conversion efficiency. In order to overcome this limitation, high surface area templated films are investigated as alternative to nanocrystalline films prepared by doctor-blade or screen-printing. Moreover, templating is expected to improve the pore accessibility what would promote the solid electrolyte penetration inside the porous network, making possible efficient charge transfers. In this study, films prepared from different structuring agents are discussed in terms of microstructural properties (porosity, crystallinity) as well as impact on the dye loading and Spiro-OMeTAD (2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)9,9'-spirobifluorene) solid electrolyte filling. We first report Rutherford backscattering spectrometry as an innovative non-destructive tool to characterize the hole transporting materials infiltration. Templated films show dye loading more than two times higher than nanocrystalline films prepared by doctor-blade or screen-printing and solid electrolyte infiltration up to 88%. [less ▲]

Detailed reference viewed: 105 (19 ULg)
Full Text
Peer Reviewed
See detailStudy of quasi-monophase Y-type hexaferrite Ba2Mg2Fe12O22 powder
Koutzarova, T.; Kolev, S.; Nedkov, I. et al

in Micro and Nanosystems (2014), 6(1), 14-20

We present the structural and magnetic properties of a multiferroic Ba2Mg2Fe12O22 hexaferrite composite containing a small amount of MgFe2O4. The composite material was obtained by auto-combustion ... [more ▼]

We present the structural and magnetic properties of a multiferroic Ba2Mg2Fe12O22 hexaferrite composite containing a small amount of MgFe2O4. The composite material was obtained by auto-combustion synthesis and, alternatively, by co-precipitation. The Ba2Mg2Fe12O22 particles obtained by co-precipitation have an almost perfect hexagonal shape in contrast with those prepared by auto-combustion. Two magnetic phase transitions, responsible for the composite’s multiferroic properties, were observed, namely, at 183 K and 40 K for the material produced by auto-combustion, and at 196 K and 30 K for the sample prepared by co-precipitation. No magnetic phase transitions in these temperature ranges were observed for a MgFe2O4 sample, which shows that the magnesium ferrite does not affect the multiferroic properties of this type of multiferroic metarials. [less ▲]

Detailed reference viewed: 33 (3 ULg)
Peer Reviewed
See detailUltrasonic Spray Pyrolysis: an innovative fabrication method for electrochromic glazing
Maho, Anthony ULg; Domercq, Benoit; Denayer, Jessica et al

Conference (2014)

Detailed reference viewed: 17 (7 ULg)
Full Text
Peer Reviewed
See detailSurfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, towards electrochromic applications
Denayer, Jessica ULg; Bister, Geoffroy; Simonis, Priscilla et al

in Applied Surface Science (2014), 321

Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the ... [more ▼]

Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics. [less ▲]

Detailed reference viewed: 51 (13 ULg)
Full Text
Peer Reviewed
See detailImproved coloration contrast and electrochromic efficiency of tungsten oxide films thanks to a surfactant-assisted ultrasonic spray pyrolysis process
Denayer, Jessica ULg; Aubry, Philippe; Bister, Geoffroy et al

in Solar Energy Materials & Solar Cells (2014), 130

Detailed reference viewed: 75 (55 ULg)
Full Text
Peer Reviewed
See detailYBa2Cu3O7-δ thick films for magnetic shielding: Electrophoretic deposition from butanol-based suspension
Closset, Raphaël ULg; Kumar, Devendra; Wera, Laurent ULg et al

in Materials Letters (2014), 119

Multilayered YBa2Cu3O7-δ (YBCO) thick films were coated on silver substrates by electrophoretic deposition (EPD) followed by heat treatment. A butanol-based YBCO suspension is used instead of the common ... [more ▼]

Multilayered YBa2Cu3O7-δ (YBCO) thick films were coated on silver substrates by electrophoretic deposition (EPD) followed by heat treatment. A butanol-based YBCO suspension is used instead of the common acetone-iodine combination. Tests with several dispersing agents reveal that a branched polyethyleneimine (PEI) dispersant develops large positive surface charge on suspended YBCO particles. As a demonstration of the performance of this new suspension formulation, a 12-layer 100 μm-thick YBCO coating was deposited on an Ag tube. The superconducting transition is sharp with onset critical temperature at 92 K. The sample can shield a magnetic field of ~1.3 mT at 77 K, i.e., the best value so far for an YBCO coating on a metallic substrate. © 2013 Elsevier B.V. [less ▲]

Detailed reference viewed: 77 (30 ULg)
Full Text
Peer Reviewed
See detailMesoporous Lithium Vanadium Oxide as Thin Film Electrode for Lithium-Ion Batteries: Comparison between Direct Synthesis of LiV2O5 and Electrochemical Lithium Intercalation in V2O5
Caes, Sébastien ULg; Arrebola, Jose Carlos; Krins, Natacha ULg et al

in Journal of Materials Chemistry A (2014), 2

Research in the field of lithium-ion batteries favours electrode materials with high surface area. In this context, this paper is dedicated to mesoporous thin films (MTFs) and compares the electrochemical ... [more ▼]

Research in the field of lithium-ion batteries favours electrode materials with high surface area. In this context, this paper is dedicated to mesoporous thin films (MTFs) and compares the electrochemical performance of g-LiV2O5 MTFs with post-synthesis electrochemical lithium intercalation in a-V2O5 MTFs. Formation of vanadium oxide MTFs by soft-chemistry is notoriously difficult. However, it is shown that wormlike vanadium oxide (V–O) and lithium vanadium oxide (Li–V–O) MTFs can be obtained on silicon substrates by a direct sol–gel soft-templating route (evaporation-induced micelle assembly) using a polystyrene-block-poly(ethylene oxide) (PS-b-PEO) structuring agent. Heat treatment for 1 minute at 400 C (Li–V–O system) or 30 minutes at 350 C (V–O system) leads to the crystallization of g-LiV2O5 or a-V2O5, respectively. These calcination conditions ensure the degradation of the structuring agent while preventing the collapse of the mesostructure, yielding MTFs with pore size diameter in the 30–35 nm range. Using the same set of synthesis conditions, films can be deposited on conductive glass substrates for electrochemical investigation: the a-V2O5 films display better specific capacities, while the cyclability is good for both compositions, even at a current density as high as 30 C-rate. [less ▲]

Detailed reference viewed: 68 (14 ULg)
Full Text
Peer Reviewed
See detailStability of templated and nanoparticles dye-sensitized solar cells : photovoltaic and electrochemical investigation of degradation mechanisms at the photoelectrode interface
Dewalque, Jennifer ULg; Nguyen, Ngoc Duy ULg; Colson, Pierre ULg et al

in Electrochimica Acta (2014), 115(1), 478-486

A key issue in the commercialization of dye-sensitized solar cells is to maintain high efficiency and long lifetime. As reported in the literature, dye-sensitized solar cells are stable under visible ... [more ▼]

A key issue in the commercialization of dye-sensitized solar cells is to maintain high efficiency and long lifetime. As reported in the literature, dye-sensitized solar cells are stable under visible light soaking but thermal stress and UV exposure lead to efficiency degradation. However, all the stability studies published so far have been performed on cells whose TiO2 electrodes were prepared by tape casting or screen printing of nanoparticle pastes/inks. The present study concerns cells based on highly porous templated TiO2 electrodes, whose larger surface area could enhance the negative effects of thermal stress, light soaking and UV exposure. The long-term stability of these cells is compared with a classical nanoparticle-based cell using current-voltage measurements (I-V curves) and electrochemical impedance spectroscopy. Due to their higher active interface, templated cells are more sensitive than nanoparticle cells to UV illumination, although this can be easily solved in both cases by the use of a UV filter. The templated cells are as stable as the nanoparticle cells under visible light soaking (UV filtered). However, we showed that templated cells are more stable under thermal stress. Moreover, as evidenced by electrochemical impedance spectroscopy, templated cells show lower transfer resistance, as well as lower recombination resistance compared to nanoparticle cells. The crystallite connectivity promoted by the templating route seems to favor the electron transfers inside the porous layer. Using templated films in dye-sensitized solar cells is therefore really promising because higher conversion efficiencies are reached without promoting cell degradation. [less ▲]

Detailed reference viewed: 135 (21 ULg)
Full Text
Peer Reviewed
See detailLow temperature crystallization of yttrium orthoferrite by organic acid-assisted sol-gel synthesis
Stevens, Frédéric ULg; Cloots, Rudi ULg; Poelman, D. et al

in Materials Letters (2014), 114

Yttrium orthoferrite (YFeO3) is a promising material for visible light photocatalytic applications due to its band gap of 2.2-2.6 eV. However, during the synthesis of YFeO3, unwanted composition can be ... [more ▼]

Yttrium orthoferrite (YFeO3) is a promising material for visible light photocatalytic applications due to its band gap of 2.2-2.6 eV. However, during the synthesis of YFeO3, unwanted composition can be obtained and the crystallization requires temperatures as high as 850 C. Powders of YFeO3 were prepared using a sol-gel method with and without organic acids (citric acid, tartaric acid, malonic acid and oxalic acid) used as organic modifiers. The band gap of these powders was measured by diffuse reflection spectroscopy, and the crystallinity and crystalline phase content were characterized by X-ray diffraction. Organic acids allow a higher purity and facilitate crystallization. This work aims to produce YFeO3 powders at the lowest possible temperature. Citric acid was found to be the best additive: it reduces the crystallization temperature below 450 C. This opens new perspectives such as the deposition of crystalline YFeO3 thin films onto conductive glass for water-splitting applications. © 2013 Elsevier B.V. [less ▲]

Detailed reference viewed: 78 (12 ULg)