References of "Henrard, Christophe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMulti-Step toolpath approach to overcome forming limitations in single point incremental forming
Verbert, J.; Belkassem, B.; Henrard, Christophe ULg et al

in Boisse, P. (Ed.) Proceedings of the 11th International ESAFORM Conference on Material Forming (2008)

Although Incremental Forming offers distinct advantages over traditional forming processes, such as short lead times and low setup costs, the process still has some drawbacks. Besides the obtainable ... [more ▼]

Although Incremental Forming offers distinct advantages over traditional forming processes, such as short lead times and low setup costs, the process still has some drawbacks. Besides the obtainable accuracy, one of the main challenges of the process are the process limits. Many workpiece geometries cannot be manufactured due to the fact that the maximum wall angle that can be formed is limited for a certain sheet material and thickness to a given angle. Different solutions to this approach have been proposed and this paper further investigates one of those solutions, the multi step approach for single point incremental forming. Experiments were performed and compared with simulations to better understand the phenomena underlying the improved process performance. [less ▲]

Detailed reference viewed: 60 (5 ULg)
Full Text
Peer Reviewed
See detailAdaptive remeshing for incremental forming simulation
Lequesne, Cédric ULg; Henrard, Christophe ULg; Bouffioux, Chantal ULg et al

in Pavel, H. (Ed.) Proceedings of the 7th International Conference and Workshop on Numerical Simulation od 3D Sheet Metal Forming Processes (NUMISHEET 2008) (2008)

Incremental forming of aluminium sheets has been modelled by finite element simulations. However the computation time was prohibitive because the tool deforms every part of the sheet and the mesh along ... [more ▼]

Incremental forming of aluminium sheets has been modelled by finite element simulations. However the computation time was prohibitive because the tool deforms every part of the sheet and the mesh along the tool path must be very fine. Therefore, an adaptive remeshing method has been developed. The elements that are close to the tool are divided into smaller elements in order to have a fine mesh where high deformations occur. Consequently, some new nodes become inconsistent with the non-refined neighbouring elements. To overcome that problem, their displacements are constrained, i.e. dependent on their master nodes displacements. The data concerning these new nodes and elements are stored in a linked list, which is a fundamental data structure. It consists of a sequence of cells, each containing data fields and a pointer towards the next cell. The goal of this article is to explain the developments performed in the finite element code, to validate the adaptive remeshing technique and to measure its efficiency using the line test simulation. During this test, which is a simple incremental forming test, a clamped sheet is deformed by a spherical tool moving along a linear path. [less ▲]

Detailed reference viewed: 161 (22 ULg)
Full Text
Peer Reviewed
See detailComparison of the tests chosen for material parameter identification to predict single point incremental forming forces
Bouffioux, Chantal ULg; Henrard, Christophe ULg; Eyckens, P. et al

in Asnafi, Nader (Ed.) Proceedings of the International Conference of International Deep Drawing Research Group (IDDRG 2008) (2008)

Single Point Incremental Forming is a sheet forming process that uses a smooth-ended tool following a specific tool path and thus eliminates the need for dedicated die sets. Using this method, the ... [more ▼]

Single Point Incremental Forming is a sheet forming process that uses a smooth-ended tool following a specific tool path and thus eliminates the need for dedicated die sets. Using this method, the material can reach a very high deformation level. A wide variety of shapes can be obtained without specific and costly equipment. To be able to optimize the process, a model and its material parameters are required. The inverse method has been used to provide material data by modeling experiments directly performed on a SPIF set-up and comparing them to the experimental measurements. The tests chosen for this study can generate heterogeneous stress and strain fields. They are performed with the production machine itself and are appropriate for the inverse method since their simulation times are not too high. [less ▲]

Detailed reference viewed: 83 (18 ULg)
Full Text
Peer Reviewed
See detailProcess window enhancement for single point incremental forming through multi-step toolpaths
Duflou, J. R.; Verbert, J.; Belkassem, B. et al

in CIRP Annals - Manufacturing Technology (2008), (57), 253-256

Single point incremental forming (SPIF) suffers from process window limitations which are strongly determined by the maximum achievable forming angle. Forming consecutive, intermediate shapes can ... [more ▼]

Single point incremental forming (SPIF) suffers from process window limitations which are strongly determined by the maximum achievable forming angle. Forming consecutive, intermediate shapes can contribute to a significantly enlarged process window by allowing steeper maximum wall angles for a range of part geometries. In this paper an experimentally explored multi-step toolpath strategy is reported and the resulting part geometries compared to simulation output. Sheet thicknesses and strains achieved with these multi-step toolpaths were verified and contribute to better understanding of the material relocation mechanism underlying the enlarged process window. [less ▲]

Detailed reference viewed: 90 (3 ULg)
Full Text
Peer Reviewed
See detailForming limit predictions for single-point incremental sheet metal forming
Van Bael, A.; Eyckens, P.; He, S. et al

in Cueto, Elías; Chinesta, Francisco (Eds.) Proceedings of the 10th International ESAFORM Conference on Material Forming (2007)

A characteristic of incremental sheet metal forming is that much higher deformations can be achieved than conventional forming limits. In this paper it is investigated to which extent the highly non ... [more ▼]

A characteristic of incremental sheet metal forming is that much higher deformations can be achieved than conventional forming limits. In this paper it is investigated to which extent the highly non-monotonic strain paths during such a process may be responsible for this high formability. A Marciniak-Kuczynski (MK) model is used to predict the onset of necking of a sheet subjected to the strain paths obtained by finite-element simulations. The predicted forming limits are considerably higher than for monotonic loading, but still lower than the experimental ones. This discrepancy is attributed to the strain gradient over the sheet thickness, which is not taken into account in the currently used MK model. [less ▲]

Detailed reference viewed: 72 (6 ULg)
Full Text
Peer Reviewed
See detailDevelopment of an inverse method for identification of materials parameters in the single point incremental sheet forming process
Bouffioux, Chantal ULg; Henrard, Christophe ULg; Gu, Jun et al

in Tisza, M. (Ed.) Proceedings of the IDDRG 2007 International Conference (2007)

The purpose of this article is to develop an inverse method for adjusting the material parameters during single point incremental forming. The main idea consists in simulating tests performed on the same ... [more ▼]

The purpose of this article is to develop an inverse method for adjusting the material parameters during single point incremental forming. The main idea consists in simulating tests performed on the same machine as the one used for the process itself. This reduces the costs of the equipment since no specific and costly standard test equipment is needed. Moreover, it has the advantage that the material parameters are fitted for a heterogeneous stress and strain state occurring during the real process. Before using the inverse method, the numerical results must be compared with the experimental ones. Several boundary conditions will be tested. [less ▲]

Detailed reference viewed: 75 (11 ULg)
Full Text
Peer Reviewed
See detailModel Identification and FE Simulations Effect of Different Yield Loci and Hardening Laws in Sheet Forming
Flores, Paulo; Duchene, Laurent ULg; Bouffioux, Chantal ULg et al

in International Journal of Plasticity (2007), 23(3), 420-449

The bi-axial experimental equipment [Flores, P., Rondia, E., Habraken, A.M., 2005a. Development of an experimental equipment for the identification of constitutive laws (Special Issue). International ... [more ▼]

The bi-axial experimental equipment [Flores, P., Rondia, E., Habraken, A.M., 2005a. Development of an experimental equipment for the identification of constitutive laws (Special Issue). International Journal of Forming Processes] developed by Flores enables to perform Bauschinger shear tests and successive or simultaneous simple shear tests and plane strain tests. Flores investigates the material behavior with the help of classical tensile tests and the ones performed in his bi-axial machine in order to identify the yield locus and the hardening model. With tests performed on one steel grade, the methods applied to identify classical yield surfaces such as [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic materials. Proceedings of the Royal Society of London A 193, 281–297; Hosford, W.F., 1979. On yield loci of anisotropic cubic metals. In: Proceedings of the 7th North American Metalworking Conf. (NMRC), SME, Dearborn, MI, pp. 191–197] ones as well as isotropic Swift type hardening, kinematic Armstrong–Frederick or Teodosiu and Hu hardening models are explained. Comparison with the Taylor–Bishop–Hill yield locus is also provided. The effect of both yield locus and hardening model choices is presented for two applications: plane strain tensile test and Single Point Incremental Forming (SPIF). [less ▲]

Detailed reference viewed: 74 (10 ULg)
Full Text
Peer Reviewed
See detailValidation of a new finite element for incremental forming simulation using a dynamic explicit approach
Henrard, Christophe ULg; Bouffioux, Chantal ULg; Duchene, Laurent ULg et al

in Key Engineering Materials [=KEM] (2007), 344

A new method for modeling the contact between the tool and the metal sheet for the incremental forming process was developed based on a dynamic explicit time integration scheme. The main advantage of this ... [more ▼]

A new method for modeling the contact between the tool and the metal sheet for the incremental forming process was developed based on a dynamic explicit time integration scheme. The main advantage of this method is that it uses the actual contact location instead of fixed positions, e.g. integration or nodal points. The purpose of this article is to compare the efficiency of the new method, as far as accuracy and computation time are concerned, with finite element simulations using a classic static implicit approach. In addition, a sensitivity analysis of the mesh density will show that bigger elements can be used with the new method compared to those used in classic simulations. [less ▲]

Detailed reference viewed: 86 (13 ULg)
Full Text
Peer Reviewed
See detailExperimental validation of the finite element simulation of the first stroke in single point incremental forming
Watzeels, Ken; Tunckol, Y.; Henrard, Christophe ULg et al

in Banabic, D. (Ed.) Proceedings of the 8th ESAFORM Conference on Material Forming (2005)

Single-point incremental forming (SPIF) is a sheet metal forming technique that has gained particular interest in rapid prototyping and small volume production. The study of the underlying forming ... [more ▼]

Single-point incremental forming (SPIF) is a sheet metal forming technique that has gained particular interest in rapid prototyping and small volume production. The study of the underlying forming mechanisms is supported by new developments in finite element simulations and experimental full field strain measurements. This article aims to describe the possibilities and difficulties encountered during validation of finite element predictions of the incremental forming process. The drawing of a straight line into a metal plate was selected as a first test case for this kind of validation. Results of both finite element simulation and experimental work will be discussed. [less ▲]

Detailed reference viewed: 74 (4 ULg)
Full Text
Peer Reviewed
See detailDevelopment of a contact model adapted to incremental forming
Henrard, Christophe ULg; Bouffioux, Chantal ULg; Godinas, A. et al

in Banabic, D. (Ed.) Proceedings of the 8th ESAFORM Conference on Material Forming (2005)

The objective of this article is to present the development of a new method for taking into account the contact between the tool and the blank during incremental forming. First, the need for such a model ... [more ▼]

The objective of this article is to present the development of a new method for taking into account the contact between the tool and the blank during incremental forming. First, the need for such a model is justified. Then, the basic features of the adapted dynamic explicit scheme are presented, followed by the new algorithms proposed and their programming. Finally, some conclusions and perspectives are drawn. [less ▲]

Detailed reference viewed: 64 (6 ULg)
Full Text
Peer Reviewed
See detailFinite element modeling of incremental forming of aluminium sheets
He, S.; Van Bael, A.; Van Houtte, P. et al

in Advanced Materials Research (2005), 6/8

Incremental forming is an innovative and flexible sheet metal forming technology for small batch production and prototyping, which does not require any dedicated die or punch to form a complex shape. This ... [more ▼]

Incremental forming is an innovative and flexible sheet metal forming technology for small batch production and prototyping, which does not require any dedicated die or punch to form a complex shape. This paper investigates the process of single point incremental forming of an aluminum cone with a 50-degree wall angle both experimentally and numerically. Finite element models are established to simulate the process. The output of the simulation is given in terms of final geometry, the thickness distribution of the product, the strain history and distribution during the deformation as well as the reaction forces. Comparison between the simulation results and the experimental data is made. [less ▲]

Detailed reference viewed: 96 (2 ULg)
Full Text
Peer Reviewed
See detailComparison of FEM simulations for the incremental forming process
Henrard, Christophe ULg; Habraken, Anne ULg; Szekeres, A. et al

in Advanced Materials Research (2005), 6-8

Incremental forming is an innovative and highly flexible sheet metal forming technology for small batch production and prototyping that does not require any adapted dies or punches to form a complex shape ... [more ▼]

Incremental forming is an innovative and highly flexible sheet metal forming technology for small batch production and prototyping that does not require any adapted dies or punches to form a complex shape. The purpose of this article is to perform FEM simulations of the forming of a cone with a 50-degree wall angle by incremental forming and to investigate the influence of some crucial computational parameters on the simulation. The influence of several parameters will be discussed: the FEM code used (Abaqus or Lagamine, a code developed at the University of Liège), the mesh size, the potential simplification due to the symmetry of the part and the friction coefficient. The output is given in terms of final geometry (which depends on the springback), strain history and distribution during the deformation, as well as reaction forces. It will be shown that the deformation is localized around the tool and that the deformations constantly remain close to a plane strain state for this geometry. Moreover, the tool reaction clearly depends on the way the contact is taken into account. [less ▲]

Detailed reference viewed: 74 (2 ULg)