References of "Hellier, C"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailWASP-92b, WASP-93b and WASP-118b: Three new transiting close-in giant planets
Hay, K. L.; Collier-Cameron, A.; Doyle, A. P. et al

E-print/Working paper (2016)

We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric ... [more ▼]

We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric lightcurves. WASP-92 is an F7 star, with a moderately inflated planet orbiting with a period of 2.17 days, which has R[SUB]p[/SUB] = 1.461 ± 0.077R[SUB]J[/SUB] and M[SUB]p[/SUB] = 0.805 ± 0.068M[SUB]J[/SUB]. WASP-93b orbits its F4 host star every 2.73 days and has R[SUB]p[/SUB] = 1.597 ± 0.077R[SUB]J[/SUB] and M[SUB]p[/SUB] = 1.47 ± 0.029M[SUB]J[/SUB]. WASP-118b also has a hot host star (F6) and is moderately inflated, where R[SUB]p[/SUB] = 1.440 ± 0.036R[SUB]J[/SUB] and M[SUB]p[/SUB] = 0.514 ± 0.020M[SUB]J[/SUB] and the planet has an orbital period of 4.05 days. They are bright targets (V = 13.18, 10.97 and 11.07 respectively) ideal for further characterisation work, particularly WASP-118b, which is being observed by K2 as part of campaign 8. The WASP-93 system has sufficient angular momentum to be tidally migrating outwards if the system is near spin-orbit alignment, which is divergent from the tidal behaviour of the majority of hot Jupiters discovered. [less ▲]

Detailed reference viewed: 20 (1 ULg)
Full Text
Peer Reviewed
See detailDiscovery of WASP-113b and WASP-114b, two inflated hot-Jupiters with contrasting densities
Barros, S. C. C.; Brown, D. J. A.; Hébrard, G. et al

E-print/Working paper (2016)

We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP survey, {\it SOPHIE} and {\it CORALIE}. The planetary nature of the systems was established by ... [more ▼]

We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP survey, {\it SOPHIE} and {\it CORALIE}. The planetary nature of the systems was established by performing follow-up photometric and spectroscopic observations. The follow-up data were combined with the WASP-photometry and analysed with an MCMC code to obtain system parameters. The host stars WASP-113 and WASP-114 are very similar. They are both early G-type stars with an effective temperature of $\sim 5900\,$K, [Fe/H]$\sim 0.12$ and $T_{\rm eff}$ $\sim 4.1$dex. However, WASP-113 is older than WASP-114. Although the planetary companions have similar radii, WASP-114b is almost 4 times heavier than WASP-113b. WASP-113b has a mass of $0.48\,$ $\mathrm{M}_{\rm Jup}$ and an orbital period of $\sim 4.5\,$days; WASP-114b has a mass of $1.77\,$ $\mathrm{M}_{\rm Jup}$ and an orbital period of $\sim 1.5\,$days. Both planets have inflated radii, in particular WASP-113 with a radius anomaly of $\Re=0.35$. The high scale height of WASP-113b ($\sim 950$ km ) makes it a good target for follow-up atmospheric observations. [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailFrom Dense Hot Jupiter to Low Density Neptune: The Discovery of WASP-127b, WASP-136b and WASP-138b
Lam, K. W. F.; Faedi, F.; Brown, D. J. A. et al

E-print/Working paper (2016)

We report three newly discovered exoplanets from the SuperWASP survey. WASP-127b is a heavily inflated super-Neptune of mass 0.18Mj and radius 1.35Rj. This is one of the least massive planets discovered ... [more ▼]

We report three newly discovered exoplanets from the SuperWASP survey. WASP-127b is a heavily inflated super-Neptune of mass 0.18Mj and radius 1.35Rj. This is one of the least massive planets discovered by the WASP project. It orbits a bright host star (V = 10.16) of spectral type G5 with a period of 4.17 days.WASP-127b is a low density planet which has an extended atmosphere with a scale height of 2500+/-400 km, making it an ideal candidate for transmission spectroscopy. WASP-136b and WASP-138b are both hot Jupiters with mass and radii of 1.51 Mj and 1.38 Rj, and 1.22 Mj and 1.09 Rj, respectively. WASP-136b is in a 5.22-day orbit around an F9 subgiant star with a mass of 1.41 Msun and a radius of 2.21 Rsun. The discovery of WASP-136b could help constraint the characteristics of the giant planet population around evolved stars. WASP-138b orbits an F7 star with a period of 3.63 days. Its radius agrees with theoretical values from standard models, suggesting the presence of a heavy element core with a mass of 10 Mearth. The discovery of these new planets helps in exploring the diverse compositional range of short-period planets, and will aid our understanding of the physical characteristics of both gas giants and low density planets. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-120b, WASP-122b and WASP-123b: Three newly discovered planets from the WASP-South survey
Turner, O. D.; Anderson, D. R.; Collier Cameron, A. et al

in Publications of the Astronomical Society of the Pacific (2016), 128

We present the discovery by the WASP-South survey of three planets transiting moderately bright stars (V ~ 11). WASP-120b is a massive (5.0MJup) planet in a 3.6-day orbit that we find likely to be ... [more ▼]

We present the discovery by the WASP-South survey of three planets transiting moderately bright stars (V ~ 11). WASP-120b is a massive (5.0MJup) planet in a 3.6-day orbit that we find likely to be eccentric (e = 0.059+0.025-0.018) around an F5 star. WASP-122b is a hot-Jupiter (1.37MJup, 1.79RJup) in a 1.7-day orbit about a G4 star. Our predicted transit depth variation cause by the atmosphere of WASP-122b suggests it is well suited to characterisation. WASP-123b is a hot-Jupiter (0.92MJup, 1.33RJup) in a 3.0-day orbit around an old (~ 7 Gyr) G5 star. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailFive transiting hot Jupiters discovered using WASP-South, Euler, and TRAPPIST: WASP-119 b, WASP-124 b, WASP-126 b, WASP-129 b, and WASP-133 b
Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2016), 591

We have used photometry from the WASP-South instrument to identify 5 stars showing planet-like transits in their light curves. The planetary nature of the companions to these stars has been confirmed ... [more ▼]

We have used photometry from the WASP-South instrument to identify 5 stars showing planet-like transits in their light curves. The planetary nature of the companions to these stars has been confirmed using photometry from the EulerCam instrument on the Swiss Euler 1.2-m telescope and the TRAPPIST telescope, and spectroscopy obtained with the CORALIE spectrograph. The planets discovered are hot Jupiter systems with orbital periods in the range 2.17 to 5.75 days, masses from 0.3 M[SUB]Jup[/SUB] to 1.2 M[SUB]Jup[/SUB] and with radii from 1 R[SUB]Jup[/SUB] to 1.5 R[SUB]Jup[/SUB]. These planets orbit bright stars (V = 11-13) with spectral types in the range F9 to G4. WASP-126 is the brightest planetary system in this sample and hosts a low-mass planet with a large radius (0.3 M[SUB]Jup[/SUB],0.95 R[SUB]Jup[/SUB]), making it a good target for transmission spectroscopy. The high density of WASP-129 A suggests that it is a helium-rich star similar to HAT-P-11 A. WASP-133 A has an enhanced surface lithium abundance compared to other old G-type stars, particularly other planet host stars. These planetary systems are good targets for follow-up observations with ground-based and space-based facilities to study their atmospheric and dynamical properties. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A55">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A55</A> [less ▲]

Detailed reference viewed: 3 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star
Delrez, Laetitia ULg; Santerne, A.; Almenara, J.-M. et al

in Monthly Notices of the Royal Astronomical Society (2016), 458(4), 4025-4043

We present the discovery by the WASP-South survey of WASP-121 b, a new remarkable short-period transiting hot Jupiter. The planet has a mass of 1.183_{-0.062}^{+0.064} MJup, a radius of 1.865 ± 0.044 RJup ... [more ▼]

We present the discovery by the WASP-South survey of WASP-121 b, a new remarkable short-period transiting hot Jupiter. The planet has a mass of 1.183_{-0.062}^{+0.064} MJup, a radius of 1.865 ± 0.044 RJup, and transits every 1.274 9255_{-0.000 0025}^{+0.000 0020} days an active F6-type main-sequence star (V = 10.4, 1.353_{-0.079}^{+0.080} M⊙, 1.458 ± 0.030 R⊙, Teff = 6460 ± 140 K). A notable property of WASP-121 b is that its orbital semimajor axis is only ˜1.15 times larger than its Roche limit, which suggests that the planet is close to tidal disruption. Furthermore, its large size and extreme irradiation (˜7.1 109 erg s-1 cm-2) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAnsiting Planets and PlanetesImals Small Telescope, we indeed detect its emission in the z'-band at better than ˜4σ, the measured occultation depth being 603 ± 130 ppm. Finally, from a measurement of the Rossiter-McLaughlin effect with the CORALIE spectrograph, we infer a sky-projected spin-orbit angle of 257.8°_{-5.5°}^{+5.3°}. This result may suggest a significant misalignment between the spin axis of the host star and the orbital plane of the planet. If confirmed, this high misalignment would favour a migration of the planet involving strong dynamical events with a third body. [less ▲]

Detailed reference viewed: 25 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-157b, a Transiting Hot Jupiter Observed with K2
Močnik, T.; Anderson, D. R.; Brown, D. J. A. et al

E-print/Working paper (2016)

We announce the discovery of the transiting hot Jupiter WASP-157b in a 3.95-d orbit around a V = 12.9 G2 main-sequence star. This moderately inflated planet has a Saturn-like density with a mass of $0.57 ... [more ▼]

We announce the discovery of the transiting hot Jupiter WASP-157b in a 3.95-d orbit around a V = 12.9 G2 main-sequence star. This moderately inflated planet has a Saturn-like density with a mass of $0.57 \pm 0.10$ M$_{\rm Jup}$ and a radius of $1.06 \pm 0.05$ R$_{\rm Jup}$. We do not detect any rotational or phase-curve modulations, nor the secondary eclipse, with conservative semi-amplitude upper limits of 250 and 20 ppm, respectively. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailFORS2 observes a multi-epoch transmission spectrum of the hot Saturn-mass exoplanet WASP-49b
Lendl, M.; Delrez, Laetitia ULg; Gillon, Michaël ULg et al

in Astronomy and Astrophysics (2016), 587

Context. Transmission spectroscopy has proven to be a useful tool for the study of exoplanet atmospheres, because the absorption and scattering signatures of the atmosphere manifest themselves as ... [more ▼]

Context. Transmission spectroscopy has proven to be a useful tool for the study of exoplanet atmospheres, because the absorption and scattering signatures of the atmosphere manifest themselves as variations in the planetary transit depth. Several planets have been studied with this technique, leading to the detection of a small number of elements and molecules (Na, K, H[SUB]2[/SUB]O), but also revealing that many planets show flat transmission spectra consistent with the presence of opaque high-altitude clouds. <BR /> Aims: We apply this technique to the M[SUB]P[/SUB] = 0.40M[SUB]J[/SUB], R[SUB]p[/SUB] = 1.20R[SUB]J[/SUB], P = 2.78 d planet WASP-49b, aiming to characterize its transmission spectrum between 0.73 and 1 ¯m and search for the features of K and H[SUB]2[/SUB]O. Owing to its density and temperature, the planet is predicted to possess an extended atmosphere and is thus a good target for transmission spectroscopy. <BR /> Methods: Three transits of WASP-49b have been observed with the FORS2 instrument installed at the VLT/UT1 telescope at the ESO Paranal site. We used FORS2 in MXU mode with grism GRIS_600z, producing simultaneous multiwavelength transit light curves throughout the i' and z' bands. We combined these data with independent broadband photometry from the Euler and TRAPPIST telescopes to obtain a good measurement of the transit shape. Strong correlated noise structures are present in the FORS2 light curves, which are due to rotating flat-field structures that are introduced by inhomogeneities of the linear atmospheric dispersion corrector's transparency. We accounted for these structures by constructing common noise models from the residuals of light curves bearing the same noise structures and used them together with simple parametric models to infer the transmission spectrum. <BR /> Results: We present three independent transmission spectra of WASP-49b between 0.73 and 1.02 ¯m, as well as a transmission spectrum between 0.65 and 1.02 ¯m from the combined analysis of FORS2 and broadband data. The results obtained from the three individual epochs agree well. The transmission spectrum of WASP-49b is best fit by atmospheric models containing a cloud deck at pressure levels of 1 mbar or lower. Based on photometric observations made with FORS2 on the ESO VLT/UT1 (Prog. ID 090.C-0758), EulerCam on the Euler-Swiss telescope and the Belgian TRAPPIST telescope.The photometric time series data in this work are only available in electronic form at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A67">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A67</A> [less ▲]

Detailed reference viewed: 2 (1 ULg)
Full Text
Peer Reviewed
See detailHot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47
Neveu-VanMalle, M.; Queloz, D.; Anderson, D. R. et al

in Astronomy and Astrophysics (2016), 586

We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 $\pm$ 0.20 M$_{\rm Jup}$ and eccentricity 0.29 $\pm$ 0.02, and it orbits ... [more ▼]

We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 $\pm$ 0.20 M$_{\rm Jup}$ and eccentricity 0.29 $\pm$ 0.02, and it orbits in 421 $\pm$ 2 days. WASP-47 c is a planet of minimum mass 1.24 $\pm$ 0.22 M$_{\rm Jup}$ and eccentricity 0.13 $\pm$ 0.10, and it orbits in 572 $\pm$ 7 days. Unlike most of the planetary systems that include a hot Jupiter, these two systems with a hot Jupiter have a long-period planet located at only $\sim$1 au from their host star. WASP-41 is a rather young star known to be chromospherically active. To differentiate its magnetic cycle from the radial velocity effect induced by the second planet, we used the emission in the H$\alpha$ line and find this indicator well suited to detecting the stellar activity pattern and the magnetic cycle. The analysis of the Rossiter-McLaughlin effect induced by WASP-41 b suggests that the planet could be misaligned, though an aligned orbit cannot be excluded. WASP-47 has recently been found to host two additional transiting super Earths. With such an unprecedented architecture, the WASP-47 system will be very important for understanding planetary migration. [less ▲]

Detailed reference viewed: 49 (4 ULg)
Full Text
Peer Reviewed
See detailThree irradiated and bloated hot Jupiters:. WASP-76b, WASP-82b, and WASP-90b
West, R. G.; Hellier, C.; Almenara, J.-M. et al

in Astronomy and Astrophysics (2016), 585

We report on three new transiting hot Jupiter planets, discovered from the WASP surveys, which we combine with radial velocities from OHP/SOPHIE and Euler/CORALIE and photometry from Euler and TRAPPIST ... [more ▼]

We report on three new transiting hot Jupiter planets, discovered from the WASP surveys, which we combine with radial velocities from OHP/SOPHIE and Euler/CORALIE and photometry from Euler and TRAPPIST. The planets WASP-76b, WASP-82b, and WASP-90b are all inflated, with radii of 1.7-1.8 R[SUB]Jup[/SUB]. All three orbit hot stars, of type F5-F7, with orbits of 1.8-3.9 d, and all three stars have evolved, post-main-sequence radii (1.7-2.2 R[SUB]⊙[/SUB]). Thus the three planets fit a known trend of hot Jupiters that receive high levels of irradiation being highly inflated. We caution, though, about the presence of a selection effect, in that non-inflated planets around ~2 R[SUB]⊙[/SUB] post-MS stars can often produce transits too shallow to be detected by the ground-based surveys that have found the majority of transiting hot Jupiters. Tables of the photometry and radial velocity are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A126">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A126</A> [less ▲]

Detailed reference viewed: 26 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-20b and WASP-28b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

in Astronomy and Astrophysics (2015), 575

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 M[SUB]Jup[/SUB]; 1.46 R ... [more ▼]

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 M[SUB]Jup[/SUB]; 1.46 R[SUB]Jup[/SUB]) in a 4.9-day, near-aligned (λ = 12.7 ± 4.2°) orbit around CD-24 102 (V = 10.7; F9). Due to the low density of the planet and the apparent brightness of the host star, WASP-20 is a good target for atmospheric characterisation via transmission spectroscopy. WASP-28b is an inflated, Jupiter-mass planet (0.91 M[SUB]Jup[/SUB]; 1.21 R[SUB]Jup[/SUB]) in a 3.4-day, near-aligned (λ = 8 ± 18°) orbit around a V = 12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars (7[SUP]+ 2[/SUP][SUB]-1[/SUB] Gyr and 6000 ± 100 K for WASP-20; 5[SUP]+ 3[/SUP][SUB]-2[/SUB] Gyr and 6100 ± 150 K for WASP-28), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation. Based on observations made with: the WASP-South (South Africa) and SuperWASP-North (La Palma) photometric survey instruments; the C2 and EulerCam cameras and the CORALIE spectrograph, all mounted on the 1.2-m Euler-Swiss telescope (La Silla); the HARPS spectrograph on the ESO 3.6-m telescope (La Silla) under programs 072.C-0488, 082.C-0608, 084.C-0185, and 085.C-0393; and LCOGT's Faulkes Telescope North (Maui) and Faulkes Telescope South (Siding Spring).Full Tables 2 and 3 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A61">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A61</A> [less ▲]

Detailed reference viewed: 26 (0 ULg)
Full Text
Peer Reviewed
See detailThe Well-aligned Orbit of Wasp-84b: Evidence for Disk Migration of a Hot Jupiter
Anderson, D. R.; Triaud, A. H. M. J.; Turner, O. D. et al

in Astrophysical Journal Letters (2015), 800

We report the sky-projected orbital obliquity (spin-orbit angle) of WASP-84 b, a 0.69{{M}[SUB]Jup[/SUB]} planet in an 8.52 day orbit around a G9V/K0V star, to be λ = -0.3 ± 1.7°. We obtain a true ... [more ▼]

We report the sky-projected orbital obliquity (spin-orbit angle) of WASP-84 b, a 0.69{{M}[SUB]Jup[/SUB]} planet in an 8.52 day orbit around a G9V/K0V star, to be λ = -0.3 ± 1.7°. We obtain a true obliquity of ψ = 17.3 ± 7.7° from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularized from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disk. This would make it the first “hot Jupiter” (P\lt 10 d) to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (T[SUB]eff[/SUB] < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets. Based on observations made with the HARPS-North spectrograph on the 3.6 m Telescopio Nazionale Galileo under OPTICON program 2013 B/069, the HARPS spectrograph on the ESO 3.6 m telescope under program 090.C-0540, and the RISE photometer on the 2.0 m Liverpool Telescope under programs PL12B13 and PL14A11. The photometric time-series and radial-velocity data used in this work are available at the CDS. [less ▲]

Detailed reference viewed: 15 (1 ULg)
Full Text
See detailDiscovery of WASP-85Ab: a hot Jupiter in a visual binary system
Brown, D. J. A.; Anderson, D. R.; Armstrong, D. J. et al

E-print/Working paper (2014)

We report the discovery of the transiting hot Jupiter exoplanet WASP-85Ab. Using a combined analysis of spectroscopic and photometric data, we determine that the planet orbits its host star every 2.66 ... [more ▼]

We report the discovery of the transiting hot Jupiter exoplanet WASP-85Ab. Using a combined analysis of spectroscopic and photometric data, we determine that the planet orbits its host star every 2.66 days, and has a mass of 1.09+/-0.03 M_Jup and a radius of 1.44+/-0.02 R_Jup. The host star is of G5 spectral type, with magnitude V=11.2, and lies 125+/-80 pc distant. We find stellar parameters of T_eff=5685+/-65 K, super-solar metallicity ([Fe/H]=0.08+/-0.10), M_star=1.04+/-0.07 M_sun and R_star=0.96+/-0.13 R_sun. The system has a K-dwarf binary companion, WASP-85B, at a separation of approximately 1.5". The close proximity of this companion leads to contamination of our photometry, decreasing the apparent transit depth that we account for during our analysis. Without this correction, we find the depth to be 50 percent smaller, the stellar density to be 32 percent smaller, and the planet radius to be 18 percent smaller than the true value. Many of our radial velocity observations are also contaminated; these are disregarded when analysing the system in favour of the uncontaminated HARPS observations, as they have reduced semi-amplitudes that lead to underestimated planetary masses. We find a long-term trend in the binary position angle, indicating a misalignment between the binary and orbital planes. WASP observations of the system show variability with a period of 14.64 days, indicative of rotational modulation caused by stellar activity. Analysis of the Ca ii H+K lines shows strong emission that implies that both binary components are strongly active. We find that the system is likely to be less than a few Gyr old. WASP-85 lies in the field of view of K2 Campaign 1. Long cadence observations of the planet clearly show the planetary transits, along with the signature of stellar variability. Analysis of the K2 data, both long and short cadence, is ongoing. [less ▲]

Detailed reference viewed: 41 (3 ULg)
Full Text
Peer Reviewed
See detailWASP-94 A and B planets: hot-Jupiter cousins in a twin-star system
Neveu-VanMalle, M.; Queloz, D.; Anderson, D. R. et al

in Astronomy and Astrophysics (2014), 572

We report the discovery of two hot-Jupiter planets, each orbiting one of the stars of a wide binary system. <ASTROBJ>WASP-94A</ASTROBJ> (<ASTROBJ>2MASS 20550794-3408079</ASTROBJ>) is an F8 type star ... [more ▼]

We report the discovery of two hot-Jupiter planets, each orbiting one of the stars of a wide binary system. <ASTROBJ>WASP-94A</ASTROBJ> (<ASTROBJ>2MASS 20550794-3408079</ASTROBJ>) is an F8 type star hosting a transiting planet with a radius of 1.72 ± 0.06 R<SUB>Jup</SUB>, a mass of 0.452 ± 0.034 M<SUB>Jup</SUB>, and an orbital period of 3.95 days. The Rossiter-McLaughlin effect is clearly detected, and the measured projected spin-orbit angle indicates that the planet occupies a retrograde orbit. <ASTROBJ>WASP-94B</ASTROBJ> (<ASTROBJ>2MASS 20550915-3408078</ASTROBJ>) is an F9 stellar companion at an angular separation of 15'' (projected separation 2700 au), hosting a gas giant with a minimum mass of 0.618 ± 0.028 M<SUB>Jup</SUB> with a period of 2.008 days, detected by Doppler measurements. The orbital planes of the two planets are inclined relative to each other, indicating that at least one of them is inclined relative to the plane of the stellar binary. These hot Jupiters in a binary system bring new insights into the formation of close-in giant planets and the role of stellar multiplicity. The radial-velocity and photometric data used for this work are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A49">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A49</A> [less ▲]

Detailed reference viewed: 22 (2 ULg)
Full Text
Peer Reviewed
See detailThree sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary
Anderson, D. R.; Collier Cameron, A.; Delrez, Laetitia ULg et al

in Monthly Notices of the Royal Astronomical Society (2014), 445(2),

We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V ˜ 10). WASP-69b is a bloated Saturn-mass planet (0.26 MJup, 1.06 RJup) in a 3 ... [more ▼]

We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V ˜ 10). WASP-69b is a bloated Saturn-mass planet (0.26 MJup, 1.06 RJup) in a 3.868-d period around an active, ˜1-Gyr, mid-K dwarf. ROSAT detected X-rays 60±27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ˜1012 g s-1. This is one to two orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously large Lyman alpha absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 MJup, 1.16 RJup) in a 3.713-d orbit around the primary of a spatially resolved, 9-10-Gyr, G4+K3 binary, with a separation of 3.3 arcsec (>=800 au). WASP-84b is a sub-Jupiter-mass planet (0.69 MJup, 0.94 RJup) in an 8.523-d orbit around an active, ˜1-Gyr, early-K dwarf. Of the transiting planets discovered from the ground to date, WASP-84b has the third-longest period. For the active stars WASP-69 and WASP-84, we pre-whitened the radial velocities using a low-order harmonic series. We found that this reduced the residual scatter more than did the oft-used method of pre-whitening with a fit between residual radial velocity and bisector span. The system parameters were essentially unaffected by pre-whitening. [less ▲]

Detailed reference viewed: 24 (3 ULg)
Full Text
Peer Reviewed
See detailWASP-117b: a 10-day-period Saturn in an eccentric and misaligned orbit
Lendl, Monika ULg; Triaud, A. H. M. J.; Anderson, D. R. et al

in Astronomy and Astrophysics (2014), 568

We report the discovery of WASP-117b, the first planet with a period beyond 10 days found by the WASP survey. The planet has a mass of M_p = 0.2755 (+/-0.0090) M_jup, a radius of R_p = 1.021 (-0.065 +0 ... [more ▼]

We report the discovery of WASP-117b, the first planet with a period beyond 10 days found by the WASP survey. The planet has a mass of M_p = 0.2755 (+/-0.0090) M_jup, a radius of R_p = 1.021 (-0.065 +0.076) R_jup and is in an eccentric (e = 0.302 +/-0.023), 10.02165 +/- 0.00055 d orbit around a main-sequence F9 star. The host star's brightness (V=10.15 mag) makes WASP-117 a good target for follow-up observations, and with a planetary equilibrium temperature of T_eq = 1024 (-26 +30) K and a low planetary density (rho_p = 0.259 (-0.048 +0.054) rho_jup) it is one of the best targets for transmission spectroscopy among planets with periods around 10 days. From a measurement of the Rossiter-McLaughlin effect, we infer a projected angle between the planetary orbit and stellar spin axes of beta = -44 (+/-11) deg, and we further derive an orbital obliquity of psi = 69.5 (+3.6 -3.1) deg. Owing to the large orbital separation, tidal forces causing orbital circularization and realignment of the planetary orbit with the stellar plane are weak, having had little impact on the planetary orbit over the system lifetime. WASP-117b joins a small sample of transiting giant planets with well characterized orbits at periods above ~8 days. [less ▲]

Detailed reference viewed: 20 (2 ULg)
See detailGround-based transmission spectrum of WASP-80 b, a gas giant transiting an M-dwarf
Delrez, Laetitia ULg; Gillon, Michaël ULg; Lendl, Monika ULg et al

Poster (2014, June 09)

We present here some results from our ground-­based multi-­object spectroscopy program aiming to measure the transmission spectrum of the transiting hot Jupiter WASP-80b using the VLT/FORS2 instrument ... [more ▼]

We present here some results from our ground-­based multi-­object spectroscopy program aiming to measure the transmission spectrum of the transiting hot Jupiter WASP-80b using the VLT/FORS2 instrument. WASP-­80b is a unique object as it is the only known specimen of gas giant orbiting an M-dwarf that is bright enough for high SNR follow-­up measurements. Due to the nature of its host star, this hot Jupiter is actually more `warm' than `hot', with an estimated equilibrium temperature of only 800K. It is thus a prime target to improve our understanding of giant exoplanet atmospheres in this temperature range. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detailA window on exoplanet dynamical histories: Rossiter-McLaughlin observations of WASP-13b and WASP-32b
Brothwell, R.D.; Watson, C.A.; Hébrard, G. et al

in Monthly Notices of the Royal Astronomical Society (2014), 440(4), 3392-3401

We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (lambda). WASP-13b and ... [more ▼]

We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (lambda). WASP-13b and WASP-32b both have prograde orbits and are consistent with alignment with measured sky-projected angles of lambda =8°^{+13}_{-12} and lambda =-2°^{+17}_{-19}, respectively. Both WASP-13 and WASP-32 have Teff < 6250 K, and therefore, these systems support the general trend that aligned planetary systems are preferentially found orbiting cool host stars. A Lomb-Scargle periodogram analysis was carried out on archival SuperWASP data for both systems. A statistically significant stellar rotation period detection (above 99.9 per cent confidence) was identified for the WASP-32 system with Prot = 11.6 ± 1.0 days. This rotation period is in agreement with the predicted stellar rotation period calculated from the stellar radius, R*, and vsin i if a stellar inclination of i* = 90° is assumed. With the determined rotation period, the true 3D angle between the stellar rotation axis and the planetary orbit, psi, was found to be psi = 11° ± 14°. We conclude with a discussion on the alignment of systems around cool host stars with Teff < 6150 K by calculating the tidal dissipation time-scale. We find that systems with short tidal dissipation time-scales are preferentially aligned and systems with long tidal dissipation time-scales have a broad range of obliquities. [less ▲]

Detailed reference viewed: 19 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting planets from WASP-South, Euler and TRAPPIST: WASP-68 b, WASP-73 b and WASP-88 b, three hot Jupiters transiting evolved solar-type stars
Delrez, Laetitia ULg; Van Grootel, Valérie ULg; Anderson, D. R. et al

in Astronomy and Astrophysics (2014)

Using the WASP transit survey, we report the discovery of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. The planet WASP-68 bhas a mass of 0.95 ± 0.03 MJup, a radius of 1.24-0.06+0.10 RJup ... [more ▼]

Using the WASP transit survey, we report the discovery of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. The planet WASP-68 bhas a mass of 0.95 ± 0.03 MJup, a radius of 1.24-0.06+0.10 RJup, and orbits a V = 10.7 G0-type star (1.24 ± 0.03 M&sun; 1.69-0.06+0.11 R&sun;, Teff = 5911 ± 60 K) with a period of 5.084298 ± 0.000015 days. Its size is typical of hot Jupiters with similar masses. The planet WASP-73 bis significantly more massive (1.88-0.06+0.07 MJup) and slightly larger (1.16-0.08+0.12 RJup) than Jupiter. It orbits a V = 10.5 F9-type star (1.34-0.04+0.05 M&sun;, 2.07-0.08+0.19 R&sun;, Teff = 6036 ± 120 K) every 4.08722 ± 0.00022 days. Despite its high irradiation (~2.3 × 109 erg s-1 cm-2), WASP-73 b has a high mean density (1.20-0.30+0.26 rhoJup) that suggests an enrichment of the planet in heavy elements. The planet WASP-88 bis a 0.56 ± 0.08 MJuphot Jupiter orbiting a V = 11.4 F6-type star (1.45 ± 0.05 M&sun;, 2.08-0.06+0.12 R&sun;, Teff = 6431 ± 130 K) with a period of 4.954000 ± 0.000019 days. With a radius of 1.70-0.07+0.13 RJup, it joins the handful of planets with super-inflated radii. The ranges of ages we determine through stellar evolution modeling are 4.5-7.0 Gyr for WASP-68, 2.8-5.7 Gyr for WASP-73 and 1.8-4.3 Gyr for WASP-88. The star WASP-73 appears to be significantly evolved, close to or already in the subgiant phase. The stars WASP-68 and WASP-88 are less evolved, although in an advanced stage of core H-burning. [less ▲]

Detailed reference viewed: 24 (8 ULg)
Full Text
See detailWASP-20b and WASP-28b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

E-print/Working paper (2014)

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 $M_{\rm Jup}$; 1.46 $R ... [more ▼]

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 $M_{\rm Jup}$; 1.46 $R_{\rm Jup}$) in a 4.9-day, near-aligned ($\lambda = 8.1 \pm 3.6^\circ$) orbit around CD-24 102 ($V$=10.7; F9). WASP-28b is an inflated, Jupiter-mass planet (0.91 $M_{\rm Jup}$; 1.21 $R_{\rm Jup}$) in a 3.4-day, near-aligned ($\lambda = 8 \pm 18^\circ$) orbit around a $V$=12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars ($7^{+2}_{-1}$ Gyr for WASP-20 and $5^{+3}_{-2}$ Gyr for WASP-28; both with $T_{\rm eff}$ < 6250 K), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation. [less ▲]

Detailed reference viewed: 20 (0 ULg)