References of "Harlay, Jérôme"
     in
Bookmark and Share    
Full Text
See detailCoccolithophore blooms in the Bay of Biscay: Results from the PEACE project
Harlay, Jérôme ULg; Chou, Lei; Sabbe, Koen et al

Conference (2013, May 15)

Pelagic and benthic processes were determined in the nothern Bay of Biscay when coccolithophores blooms occured between 2006 and 2008. Here we present a synthesis of pelagic primary production ... [more ▼]

Pelagic and benthic processes were determined in the nothern Bay of Biscay when coccolithophores blooms occured between 2006 and 2008. Here we present a synthesis of pelagic primary production, calcification and respiration and benthic respiration and dissolution of CaCO3. Or results suggest that CaCO3 dissolution in the surface sediments is small (~1%) compared to integrated pelagic calcification. Benthic respiration increases with the organic load of the sediment and represents ~8% of the integrated pelagic respiration. The relationship between dissolution and respiration rates suggests a metabolic driven dissolution in waters supersaturated with respect to calcite (omega>3.5). We address a mass balance of the described processes and associated CO2 fluxes in the water column. [less ▲]

Detailed reference viewed: 24 (5 ULg)
See detailBiogeochemistry and carbon mass balance of a coccolithophore bloom in the northern Bay of Biscay (June 2006)
Harlay, Jérôme ULg; Chou, Lei; Van Oostende, Nicolas et al

Poster (2013, May)

Primary production (PP), calcification (CAL), bacterial production (BP) and dark community respiration (DCR) were measured along with a set of various biogeochemical variables, in early June 2006, at ... [more ▼]

Primary production (PP), calcification (CAL), bacterial production (BP) and dark community respiration (DCR) were measured along with a set of various biogeochemical variables, in early June 2006, at several stations at the shelf break of the northern Bay of Biscay. The cruise was carried out after the main spring diatom bloom that, based on the analysis of a time-series of remotely sensed chlorophyll-a (Chl-a), peaked in mid-April. Remotely sensed sea surface temperature (SST) indicated the occurrence of enhanced vertical mixing (due to internal tides) at the continental slope, while adjacent waters on the continental shelf were stratified, as confirmed by vertical profiles of temperature acquired during the cruise. The surface layer of the stratified water masses (on the continental shelf) was depleted of inorganic nutrients. Dissolved silicate (DSi) levels probably did not allow significant diatom development. We hypothesize that mixing at the continental slope allowed the injection of inorganic nutrients that triggered the blooming of mixed phytoplanktonic communities dominated by coccolithophores (Emiliania huxleyi) that were favoured with regards to diatoms due to the low DSi levels. Based on this conceptual frame, we used an indicator of vertical stratification to classify the different sampled stations, and to reconstruct the possible evolution of the bloom from the onset at the continental slope (triggered by vertical mixing) through its development as the water mass was advected on-shelf and stratified. We also established a carbon mass balance at each station by integrating in the photic layer PP, CAL and DCR. This allowed computation at each station of the contribution of PP, CAL and DCR to CO2 fluxes in the photic layer, and how they changed from one station to another along the sequence of bloom development (as traced by the stratification indicator). This also showed a shift from net autotrophy to net heterotrophy as the water mass aged (stratified), and suggested the importance of extracellular production of carbon to sustain the bacterial demand in the photic and aphotic layers. [less ▲]

Detailed reference viewed: 5 (1 ULg)
Full Text
See detailCO2, CH4 and N2O dynamics and fluxes in the brackish Lake Grevelingen (The Netherlands)
Borges, Alberto ULg; Meysman, Filip; Harlay, Jérôme ULg

Poster (2013)

Lake Grevelingen in the South West Netherlands is a former estuary locked off from the sea by two dikes and a brackish lake since 1971 (salinities from 29 to 33 during our sampling). It is connected with ... [more ▼]

Lake Grevelingen in the South West Netherlands is a former estuary locked off from the sea by two dikes and a brackish lake since 1971 (salinities from 29 to 33 during our sampling). It is connected with the North Sea by sluices, has a surface area of 108 km2, a mean depth of 5.3 m, a maximum depth of 48 m, and about 60% of the area the depth is less than 5 m. In summer, anoxia occurs in bottom waters. From January 2012 to December 2012 a biogeochemical survey was conducted at monthly interval at a fixed station (35 m depth) at Den Osse. Here, we focus on the analysis of partial pressure of CO2, and concentrations of CH4 and N2O obtained throughout the water column. pCO2 followed a typical seasonal cycle for temperate coastal environments shifting from CO2 over-saturation in winter to spring CO2 under-saturation due to the spring phytoplankton bloom, and shifting back to over-saturation in fall. Unlike the adjacent Southern Bight of the North Sea and the adjacent Oosterschelde, CO2 under-saturation prevailed in summer in Lake Grevelingen. CH4 values were minimal in winter ( 20 nM) and as stratification developed during spring and summer a distinct maximum of CH4 (up to 730 nM) developed at the pycnocline (5 to 10 m). N2O showed little seasonal variations and only a very faint increase with depth, except in August when bottom waters became anoxic. At this time, N2O shown a maximum ( 22 nM) at the oxycline (probably related to enhanced N2O production by nitrification at low O2 concentrations), and decreased in the anoxic layer ( 3 nM) (probably related to denitrification). [less ▲]

Detailed reference viewed: 32 (4 ULg)
Full Text
Peer Reviewed
See detailParticle export during a bloom of Emiliania huxleyi in the North-West European continental margin
Schmidt, S.; Harlay, Jérôme ULg; Borges, Alberto ULg et al

in Journal of Marine Systems (2013), 109-110

Coccolithophores, the dominant pelagic calcifiers in the oceans, play a key role in the marine carbon cycle through calcification, primary production and carbon export, the main rivers of the biological ... [more ▼]

Coccolithophores, the dominant pelagic calcifiers in the oceans, play a key role in the marine carbon cycle through calcification, primary production and carbon export, the main rivers of the biological CO2 pump. In May 2002 a cruise was conducted on the outer shelf of the North West European continental margin, from the north Bay of Biscay to the Celtic Sea (47.0°-50.5°N, 5.0°-11.0°W), an area where massive blooms of Emiliania huxleyi are observed annually. Biogeochemical variables including primary production, calcification, partial pressure of CO2 (pCO2), chlorophyll-a (Chl-a), particle load, particulate organic and inorganic carbon (POC, PIC) and 234Th, were measured in surface waters to assess particle dynamic and carbon export in relation to the development of a coccolithophore bloom. We observed a marked northward decrease in Chl-a concentration and calcification rates: the bloom exhibited lower values and may less well developed in the Goban Spur area. The export fluxes of POC and PIC from the top 80 m, determined using the ratios of POC and PIC to 234Th of particles, ranged from 81 to 323 mgC m-2 d-1 and from 30 to 84 mgC m-2 d-1, respectively. The highest fluxes were observed in waters presenting a well-developed coccolithophore bloom, as shown by high reflectance of surface waters. This experiment confirms that the occurrence of coccolithophores promotes efficient export of organic and inorganic carbon on the North-West European margin. [less ▲]

Detailed reference viewed: 70 (30 ULg)
Full Text
Peer Reviewed
See detailContribution of combined carbohydrates to dissolved and particulate organic carbon after the spring bloom in the northern Bay of Biscay (North-Eastern Atlantic Ocean)
Engel, Anja; Harlay, Jérôme ULg; Piontek, Judith et al

in Continental Shelf Research (2012), 45

Two cruises were conducted after the diatom spring bloom in the northern Bay of Biscay (2006, 2007), to assess the contribution of combined carbohydrates to organic carbon partitioning. Partitioning of ... [more ▼]

Two cruises were conducted after the diatom spring bloom in the northern Bay of Biscay (2006, 2007), to assess the contribution of combined carbohydrates to organic carbon partitioning. Partitioning of total organic carbon (TOC) into particulate organic carbon (POC) and dissolved organic carbon (DOC) differed between the two years, particularly for depths above 60 m, and was related to the vernal development of the system: a post spring-bloom system in 2007, and a more stratified summer system with higher coccolithophore abundance in 2006. In general, contribution of POC to TOC ranged between 4 and 28% and decreased with depth. Concentration of high molecular weight (>1 kDa) dissolved combined carbohydrates (dCCHO) ranged from 0.6 to 1.4 µmol L−1 and contributed between 4 and 11% to DOC. Concentration of particulate combined carbohydrates (pCCHO) varied between 0.03 and 1.3 µmol L−1. A high contribution of pCCHO to POC was observed in 2007, i.e. 22–60% C compared to 3–10% C in 2006, and coincided with a higher abundance of transparent exopolymer particles (TEP). TEP accounted for 0.4–2.0 µmol C L−1 in 2007 and 0.5–1.5 µmol C L−1 in 2006. Above 60 m, differences in contribution of TEP-C to POC were most pronounced yielding 15.4±3.0% in 2007 compared to relatively low 4.8±1.4%, in 2006. TEP-C could explain about 60% in 2007 and about 40% of pCCHO-C in 2006. Hence, TEP were identified as a substantial component of pCCHO and POC, particularly in the wake of the spring bloom. Molecular composition of CCHO, i.e. HMW-dCCHO+pCCHO, revealed little difference between the years but strong variation over depth. Uronic acids (URA) were identified as a major component of CCHO (20–40%). Our study indicates that the distribution and composition of CCHO in surface seawater are determined by biogeochemical processes on a seasonal scale. A better knowledge of CCHO cycling and molecular signature has therefore a high potential for a better tracing of carbon dynamics in shelf sea ecosystems. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
See detailEstimating pCO2 from remote sensing in the Belgian Coastal Zone
Borges, Alberto ULg; Ruddick, K.; Harlay, Jérôme ULg

Conference (2012, May 09)

Detailed reference viewed: 25 (1 ULg)
Full Text
See detailEstimating pCO2 from remote sensing in the Belgian Coastal Zone
Borges, Alberto ULg; Ruddick, Kevin; Harlay, Jérôme ULg

Poster (2012, April 22)

Detailed reference viewed: 18 (2 ULg)
Full Text
Peer Reviewed
See detailPhytoplankton community dynamics during late spring coccolithophore blooms at the continental margin of the Celtic Sea (North East Atlantic, 2006–2008)
Van Oostende, Nicolas; Harlay, Jérôme ULg; Vanelslander, Bart et al

in Progress in Oceanography (2012), 114

We determined the spatial and temporal dynamics of major phytoplankton groups in relation to biogeochemical and physical variables during the late spring coccolithophore blooms (May-June) along and across ... [more ▼]

We determined the spatial and temporal dynamics of major phytoplankton groups in relation to biogeochemical and physical variables during the late spring coccolithophore blooms (May-June) along and across the continental margin of the northern Bay of Biscay (2006-2008). Photosynthetic biomass (Chla) of the dominant plankton groups was determined by CHEMTAX analysis of HPLC pigment signatures. We used uni- and multivariate statistical techniques to identify the main physical and biogeochemical variables underlying the variation in phytoplankton biomass and community structure. Phytoplankton standing stock biomass varied substantially between and during the campaigns (areal Chla (mg Chla m-2) in June 2006: 63.8 ± 26.5, May 2007: 27.9 ± 8.4, and May 2008: 41.3 ± 21.8), reflecting the different prevailing weather, irradiance, and sea surface temperature conditions between the campaigns. Coccolithophores, represented mainly by Emiliania huxleyi, and diatoms were the dominant phytoplankton groups, with a maximal contribution of, respectively, 72% and 89% of the total Chla. Prasinophytes, dinoflagellates, and chrysophytes often co-occurred during coccolithophorid blooms, while diatoms dominated the phytoplankton biomass independently of the abundance of other groups. The location of the stations on the shelf or on the slope side of the continental margin did not influence the biomass and the composition of the phytoplankton community despite significantly stronger water column stratification and lower nutrient concentrations on the shelf. The alternation between diatom and coccolithophorid blooms of similar biomasses, following the mostly diatom-dominated main spring bloom, was partly driven by changes in nutrient stoichiometry (N:P and dSi:N). High concentrations of transparent exopolymer particles (TEP) were associated with stratified, coccolithophore-rich water masses, which probably originated from the slope of the continental margin and warmed during advection onto the shelf. Although we did not determine the proportion of export production attributed to phytoplankton groups, the abundance of coccolithophores, TEP, and coccoliths may affect the carbon export efficiency through increased sinking rates of particles formed by aggregation of TEP and coccoliths. [less ▲]

Detailed reference viewed: 44 (14 ULg)
See detailBiogeochemistry and carbon mass balance of a coccolithophore bloom in the northern Bay of Biscay (June 2006)
Harlay, Jérôme ULg; Chou, Lei; De Bodt, Caroline et al

Poster (2011, April 03)

Primary production (PP), calcification (CAL), bacterial production (BP) and dark community respiration (DCR) were measured along with a set of various biogeochemical variables, in early June 2006, at ... [more ▼]

Primary production (PP), calcification (CAL), bacterial production (BP) and dark community respiration (DCR) were measured along with a set of various biogeochemical variables, in early June 2006, at several stations at the shelf break of the northern Bay of Biscay. The cruise was carried out after the main spring diatom bloom that, based on the analysis of a time-series of remotely sensed chlorophyll-a (Chl-a), peaked in mid-April. Remotely sensed sea surface temperature (SST) indicated the occurrence of enhanced vertical mixing (due to internal tides) at the continental slope, while adjacent waters on the continental shelf were stratified, as confirmed by vertical profiles of temperature acquired during the cruise. The surface layer of the stratified water masses (on the continental shelf) was depleted of inorganic nutrients. Dissolved silicate (DSi) levels probably did not allow significant diatom development. We hypothesize that mixing at the continental slope allowed the injection of inorganic nutrients that triggered the blooming of mixed phytoplanktonic communities dominated by coccolithophores (Emiliania huxleyi) that were favoured with regards to diatoms due to the low DSi levels. Based on this conceptual frame, we used an indicator of vertical stratification to classify the different sampled stations, and to reconstruct the possible evolution of the bloom from the onset at the continental slope (triggered by vertical mixing) through its development as the water mass was advected on-shelf and stratified. We also established a carbon mass balance at each station by integrating in the photic layer PP, CAL and DCR. This allowed computation at each station of the contribution of PP, CAL and DCR to CO2 fluxes in the photic layer, and how they changed from one station to another along the sequence of bloom development (as traced by the stratification indicator). This also showed a shift from net autotrophy to net heterotrophy as the water mass aged (stratified), and suggested the importance of extracellular production of carbon to sustain the bacterial demand in the photic and aphotic layers. [less ▲]

Detailed reference viewed: 17 (2 ULg)
See detailParticulate carbon export during a bloom of Emiliania huxleyi in the Northwest European continental margin (northern Bay of Biscay)
Schmidt, Sabine; Harlay, Jérôme ULg; Borges, Alberto ULg et al

Poster (2011, April 03)

Coccolithophores, the dominant pelagic calcifiers in the oceans, play a key role in the marine carbon cycle through calcification, primary production and carbon export, the main drivers of the biological ... [more ▼]

Coccolithophores, the dominant pelagic calcifiers in the oceans, play a key role in the marine carbon cycle through calcification, primary production and carbon export, the main drivers of the biological CO2 pump. Massive blooms of Emiliania huxleyi are observed each year at the continental margin of the Bay of Biscay. The BG02/11 cruise (RV Belgica), supported by near-real time remote sensing data, was conducted in early May 2002, along a transect on the outer shelf of the Northern Bay of Biscay between the La Chapelle Bank (southern region of the transect) and Goban Spur (northern region of the transect) (47.0°-50.5°N, 5.0°-11.0°W). Biogeochemical variables including primary production, calcification, partial pressure of CO2 (pCO2), chlorophyll-a (Chl-a), particle load, particulate organic and inorganic carbon (POC, PIC), Th-234 were measured in surface waters to assess particle dynamics, and carbon export in relation to the development of a coccolithophore bloom. We observed a marked northward decrease in water irradiance, Chl-a concentration and calcification rates: the bloom exhibited lower values and may have been less well developed in the Goban Spur area. There was also a large northward decrease in particulate 234Th settling fluxes along the transect from La Chapelle Bank to Goban Spur. The export fluxes of POC and PIC from the top 80 m, determined using the ratios of POC and PIC to Th-234 of particles, ranged from 81 to 323 mgC m-2 d-1 and from 30 to 128 mgC m-2 d-1, respectively. The highest fluxes were observed in waters presenting a well-developed coccolithophore bloom, as shown by high reflectance of surface waters. Despite the high calcification rates at the southernmost stations, surface waters were a net sink of atmospheric CO2 during this cruise. These results tend to demonstrate the enhancement of coccolithophore blooms on the efficiency of the surface community to export carbon to deep ocean. However, improvements in the estimation of POC and PIC export during coccolithophore blooms are needed to not only understand the present calcification to primary production (C:P) ratio, but also to help understand future sequestration of organic and inorganic carbon to the deep ocean. [less ▲]

Detailed reference viewed: 50 (2 ULg)
Full Text
Peer Reviewed
See detailBiogeochemistry and carbon mass balance of a coccolithophore bloom in the northern Bay of Biscay (June 2006)
Harlay, Jérôme ULg; Chou, Lei; De Bodt, Caroline et al

in Deep-Sea Research Part I, Oceanographic Research Papers (2011), 58(2), 111-127

Primary production (PP), calcification (CAL), bacterial production (BP) and dark community respiration (DCR) were measured along with a set of various biogeochemical variables, in early June 2006, at ... [more ▼]

Primary production (PP), calcification (CAL), bacterial production (BP) and dark community respiration (DCR) were measured along with a set of various biogeochemical variables, in early June 2006, at several stations at the shelf break of the northern Bay of Biscay. The cruise was carried out after the main spring diatom bloom that, based on the analysis of a time-series of remotely sensed chlorophyll-a (Chl-a), peaked in mid-April. Remotely sensed sea surface temperature (SST) indicated the occurrence of enhanced vertical mixing (due to internal tides) at the continental slope, while adjacent waters on the continental shelf were stratified, as confirmed by vertical profiles of temperature acquired during the cruise. The surface layer of the stratified water masses (on the continental shelf) was depleted of inorganic nutrients. Dissolved silicate (DSi) levels probably did not allow significant diatom development. We hypothesize that mixing at the continental slope allowed the injection of inorganic nutrients that triggered the blooming of mixed phytoplanktonic communities dominated by coccolithophores (Emiliania huxleyi) that were favoured with regards to diatoms due to the low DSi levels. Based on this conceptual frame, we used an indicator of vertical stratification to classify the different sampled stations, and to reconstruct the possible evolution of the bloom from the onset at the continental slope (triggered by vertical mixing) through its development as the water mass was advected on-shelf and stratified. We also established a carbon mass balance at each station by integrating in the photic layer PP, CAL and DCR. This allowed computation at each station of the contribution of PP, CAL and DCR to CO2 fluxes in the photic layer, and how they changed from one station to another along the sequence of bloom development (as traced by the stratification indicator). This also showed a shift from net autotrophy to net heterotrophy as the water mass aged (stratified), and suggested the importance of extracellular production of carbon to sustain the bacterial demand in the photic and aphotic layers. [less ▲]

Detailed reference viewed: 27 (12 ULg)
Full Text
Peer Reviewed
See detailThe utilization of polysaccharides by heterotrophic bacterioplankton in the Bay of Biscay (North Atlantic Ocean)
Piontek, Judith; Händel, Nicole; De Bodt, Caroline et al

in Journal of Plankton Research (2011), 33(11), 1719-1735

This study investigates the turnover of polysaccharides by heterotrophic bacterioplankton in the northern Bay of Biscay, a productive marine system on the shelf-break of the temperate Atlantic Ocean ... [more ▼]

This study investigates the turnover of polysaccharides by heterotrophic bacterioplankton in the northern Bay of Biscay, a productive marine system on the shelf-break of the temperate Atlantic Ocean. Field studies were conducted along the shelf-break south of Ireland and west of France (47° 07' 83'' N, 6° 92' 01'' E and 51° 34' 42'' N, 10° 49' 95'' E) during the development of phytoplankton blooms in late spring. Bacterial biomass production (BBP) near the surface ranged from 0.5 to 27.4 nmol C L-1 h-1 in both years. A direct relationship between BBP and the concentration of total polysaccharides strongly suggests the dependence of bacterial growth on the availability of semi-labile organic matter. Concentrations of combined glucose as well as rate constants of extracellular glucosidase activity and glucose uptake were determined to estimate the actual carbon fluxes from bacterial polysaccharide turnover. Results reveal that the degradation of polysaccharides n the upper 100 m of the water column sustained on average a glucose flux of 2.6 mmol C m-2 d-1 i that was available for bacterial uptake. The mean turnover time for polysaccharides was 170 and 165 days for alpha- and beta-glycosidic linked polymers, respectively. Free glucose, the labile hydrolysate of polysaccharides, had a mean turnover time of 4.5 days and supported 2.2 to 18.4% of BBP. The incorporation of glucose into bacterial biomass was stimulated by the availability of inorganic nitrogen. Overall, our results demonstrate that the bacterial recycling of polysaccharides in the Bay of Biscay generates a relevant flux of organic carbon in microbial food-webs and biogeochemical processes. [less ▲]

Detailed reference viewed: 29 (5 ULg)
Full Text
Peer Reviewed
See detailCarbon and nitrogen flows during a bloom of the coccolithophore Emiliania huxleyi: Modelling a mesocosm experiment
Joassin, Pascal ULg; Delille, Bruno ULg; Soetaert, Karline et al

in Journal of Marine Systems (2011), 85

A dynamic model has been developed to represent biogeochemical variables and processes observed during experimental blooms of the coccolithophore Emiliania huxleyi induced inmesocosms over a period of 23 ... [more ▼]

A dynamic model has been developed to represent biogeochemical variables and processes observed during experimental blooms of the coccolithophore Emiliania huxleyi induced inmesocosms over a period of 23 days. The model describes carbon (C), nitrogen (N), and phosphorus (P) cycling through E. huxleyi and the microbial loop, and computes pH and the partial pressure of carbon dioxide (pCO2) from dissolved inorganic carbon (DIC) and total alkalinity (TA). The main innovations are: 1) the representation of E. huxleyi dynamics using an unbalanced growthmodel in carbon and nitrogen, 2) the gathering of formulations describing typical processes involved in the export of carbon such as primary production, calcification, cellular dissolved organic carbon (DOC) excretion, transparent exopolymer (TEP) formation and viral lyses, and 3) an original and validated representation of the calcification process as a function of the net primary production with a modulation by the intra-cellular N:C ratio mimicking the effect of nutrients limitation on the onset of calcification. It is shown that this new mathematical formulation of calcification provides a better representation of the dynamics of TA, DIC and calcification rates derived from experimental data compared to classicaly used formulations (e.g. function of biomass or of net primary production without anymodulation term). In a first step, the model has been applied to the simulations of present pCO2 conditions. It adequately reproduces the observations for chemical and biological variables and provides an overall view of carbon and nitrogen dynamics. Carbon and nitrogen budgets are derived from the model for the different phases of the bloom, highlighting three distinct phases, reflecting the evolution of the cellular C:N ratio and the interaction between hosts and viruses. During the first phase, inorganic nutrients are massively consumed by E. huxleyi increasing its biomass. Uptakes of carbon and nitrogen are maintained at a constant ratio. The second phase is triggered by the exhaustion of phosphate (PO4 3−). Uptake of carbon and nitrogen being uncoupled, the cellular C:N ratio of E. huxleyi increases. This stimulates the active release of DOC, acting as precursors for TEP. The third phase is characterised by an enhancement of the phytoplankton mortality due to viral lysis. A huge amount of DOC has been accumulated in the mesocosm. [less ▲]

Detailed reference viewed: 117 (10 ULg)
Full Text
Peer Reviewed
See detailBenthic remineralization in the northwest European continental margin (northern Bay of Biscay)
Suykens, Kim; Schmidt, Sabine; Delille, Bruno ULg et al

in Continental Shelf Research (2011), 31

We report a dataset of sediment characteristics and biogeochemical fluxes at the watersediment interface at the northwest European continental margin (northern Bay of Biscay). Cores were obtained in June ... [more ▼]

We report a dataset of sediment characteristics and biogeochemical fluxes at the watersediment interface at the northwest European continental margin (northern Bay of Biscay). Cores were obtained in June 2006, May 2007 and 2008, at 18 stations on the shelf break (120 to 180 m), and at 2 stations on the continental slope (520 m and 680 m). Water-sediment fluxes of dissolved oxygen (O2), total alkalinity (TA), nitrate (NO3-), and dissolved silicate (DSi) were measured at a total of 20 stations. Sediment characteristics include: grain size, chlorophyll-a (Chl-a) and phaeopigment (Phaeo) content, particulate organic (POC) and inorganic (PIC) carbon content, and lead-210 (210Pb) and thorium-234 (234Th) activities. Sediments were sandy (fine to coarse) with organic matter (OM) (1.0 - 4.0 %) and Chl-a (0.01 - 0.95 μg g-1) contents comparable to previous investigations in the same region, and a relatively high PIC fraction (0.8 - 10.2 %). Water-sediment O2 fluxes (-2.4 to -8.4 mmol O2 m-2 d-1) were low compared to other coastal environments and correlated well with OM and Chl-a content. 234Th activity profiles indicated that Chl-a sediment content was mainly controlled by physical mixing processes related to local hydrodynamics. The correlation between water-sediment fluxes of O2 and NO3- indicated a close coupling of nitrification/denitrification and total benthic organic carbon degradation. Dissolution of biogenic silica (0.05 to 0.95 mmol m-2 d-1) seemed uncoupled from organic carbon degradation, as characterized by water-sediment O2 fluxes. The link between water-sediment fluxes of TA and O2 indicated the occurrence of metabolic driven dissolution of calcium carbonates (CaCO3) in the sediments (~ 0.33 ± 0.47 mmol m-2 d-1) which represented ~ 1 % of the pelagic calcification rates due to coccolithophores measured during the cruises. These CaCO3 dissolution rates were below those reported in sediments of continental slopes and of the deep ocean, probably due to the high over-saturation with respect to CaCO3 of the water column overlying the continental shelf sediments of the northern Bay of Biscay. Rates of total benthic organic carbon degradation were low compared to water column rates of primary production and aphotic community respiration obtained during the cruises. [less ▲]

Detailed reference viewed: 33 (11 ULg)
Full Text
Peer Reviewed
See detailBiogeochemical study of a coccolithophore bloom in the northern Bay of Biscay (NE Atlantic Ocean) in June 2004
Harlay, Jérôme ULg; Borges, Alberto ULg; Van Der Zee, Claar et al

in Progress in Oceanography (2010), 86(3-4), 317-336

The present paper synthesizes data obtained during a multidisciplinary cruise carried out in June 2004 at the continental margin of the northern Bay of Biscay. The data-set allows to describe the ... [more ▼]

The present paper synthesizes data obtained during a multidisciplinary cruise carried out in June 2004 at the continental margin of the northern Bay of Biscay. The data-set allows to describe the different stages of a coccolithophore bloom dominated by Emiliania huxleyi. The cruise was carried out after the main spring phytoplankton bloom that started in mid-April and peaked in mid-May. Consequently, low phosphate (PO4<0.2 μM) and silicate (DSi<2.0 μM) concentrations, low partial pressure of carbon dioxide (pCO2) and high calcite saturation degree in surface waters combined with thermal stratification, probably favoured the blooming of coccolithophores. During the period of the year our cruise was carried out, internal tides induce enhanced vertical mixing at the continental shelf break leading to the injection of inorganic nutrients to surface waters that probably trigger the bloom. The bloom developed as the water-column stratified and as the water mass was advected over the continental shelf, following the general residual circulation in the area. The most developed phase of the bloom was sampled in a remote sensed high reflectance (HR) patch over the continental shelf that was characterized by low chlorophyll-a (Chl-a) concentration in surface waters (<1.0 μg L-1), high particulate inorganic carbon (PIC) concentration (~8 μmol L-1) and coccolithophore abundance up to 57×106 cells L-1. Transparent exopolymer particles (TEP) concentrations ranged between 15 and 120 μg Xeq L-1 and carbon content of TEP represented up to 26% of the particulate organic carbon (POC; maximum concentration of 15.5 μmol L-1 in the upper 40 m). Integrated primary production (PP) ranged between 210 mg C m-2 d-1 and 680 mg C m-2 d-1 and integrated calcification (CAL) ranged between 14 and 140 mg C m-2 d-1, within the range of PP and CAL values previously reported during coccolithophore blooms in open and shelf waters of the North Atlantic Ocean. Bacterial protein production (BPP) measurements in surface waters (0.3 to 0.7 μg C L-1 h-1) were much higher than those reported during early phases of coccolithophore blooms in natural conditions, but similar to those during peak and declining coocolithophorid blooms reported in mesocosms. Total alkalinity anomalies with respect to conservative mixing (ΔTA) down to -49 μmol kg-1 are consistent with the occurrence of biogenic precipitation of calcite, while pCO2 remained 15 to 107 μatm lower than atmospheric equilibrium (372 μatm). The correlation between ΔTA and pCO2 suggested that pCO2 increased in part due to calcification, but this increase was insufficient to overcome the background under-saturation of CO2. This is related to the biogeochemical history of the water masses due to net carbon fixation by the successive phytoplankton 2 [less ▲]

Detailed reference viewed: 37 (8 ULg)
Full Text
See detailTowards a comprehensive C-budgeting approach of a cocoliothophorid bloom in the northern Bay of Biscay: results from PEACE project.
Harlay, Jérôme ULg; Borges, Alberto ULg; Delille, Bruno ULg et al

Conference (2010, May 03)

During coccolithophorid blooms, carbon (C) cycling in the photic zone is driven by the production and the degradation of organic matter (primary production and community respiration), as well as the ... [more ▼]

During coccolithophorid blooms, carbon (C) cycling in the photic zone is driven by the production and the degradation of organic matter (primary production and community respiration), as well as the production and the dissolution of biogenic calcium carbonate (CaCO3). Organic and inorganic metabolisms lead to a transfer of carbon to depth and both impact the flows of carbon dioxide (CO2) in the water column and the CO2 flux across the air-sea interface. Furthermore, due to complex dynamics of coccolithophores, the impact of metabolic C fluxes on CO2 fluxes is variable in time, depending on the stage of the bloom development, and mainly on the ratio of calcification to primary production (CAL:GPP). Understanding and quantifying C cycling of coccolithophorid blooms in natural conditions is a prerequisite to correctly validate biogeochemical models aiming at predicting feedbacks related to ocean acidification, which incorporate knowledge obtained from perturbation laboratory experiments. We carried out a trans-disciplinary cruise on board the R/V Belgica at the continental margin of the Bay of Biscay, in the midst of a coccolithophorid bloom, during which 14C primary production (GPPp), 14C calcification (CAL) and O2-based pelagic community respiration rates (PCR) were determined in the water column. [less ▲]

Detailed reference viewed: 17 (0 ULg)