References of "Hanson, Julien"
     in
Bookmark and Share    
See detailIdentification of chemical probes and signaling pathways for the orphan GPCR GPR27
Dupuis, Nadine ULg; Gilissen, Julie ULg; Pirotte, Bernard ULg et al

Poster (2013, June 06)

The largest family of membrane receptors is represented by G protein-coupled receptors (GPCRs), which are characterized by 7 transmembrane domains. Even if marketed drugs currently target only 10% of all ... [more ▼]

The largest family of membrane receptors is represented by G protein-coupled receptors (GPCRs), which are characterized by 7 transmembrane domains. Even if marketed drugs currently target only 10% of all GPCRs, they represent more than 30% of all small molecules based therapies. The physiological and pathophysiological role of a GPCR is defined by its expression pattern, signaling pathway and specific ligand[1]. GPCRs which have not yet been associated to a physiological ligand are called orphan GPCRs and represent ~100 of the ~370 human non-odorant GPCRs[2]. This project aims at identifying and developing pharmacological tools for GPR27 (SREB1), one of these orphan receptors. GPR27 has recently been shown to have a role in the regulation of insulin promoter activity and insulin secretion[3]. Nevertheless, the pharmacology of GPR27 remains elusive and the lack of appropriate pharmacological tools dramatically restricts the understanding of its function and its validation as a drug target. Thus, we plan to study its signaling pathway and to develop screening methods that will allow us to identify small molecules able to interact with GPR27. These are important steps toward understanding its function and evaluating GPR27 as a potential drug target, for instance in insulin-related metabolic disorders such as type II diabetes or in other pathologies where it might be involved. References 1) Wise, A., et al. (2002). Drug discovery today, 7, 235 2) Fredriksson, R., et al. (2003). Molecular pharmacology, 63, 1256 3) Ku, G. M., et al. (2012). PLoS genetics, 8, e1002449 [less ▲]

Detailed reference viewed: 85 (2 ULg)
Full Text
Peer Reviewed
See detailSynthesis and pharmacological evaluation of 2-aryloxy/arylamino-5-cyanobenzenesulfonylureas as novel thromboxane A2 receptor antagonists
Bambi-Nyanguile, Sylvie-Mireille; Hanson, Julien ULg; OOMS, Annie ULg et al

in European Journal of Medicinal Chemistry (2013), 65C

Detailed reference viewed: 25 (7 ULg)
See detailChemical probes and signaling pathways for the orphan GPCR GPR27
Dupuis, Nadine ULg; Gilissen, Julie ULg; Pirotte, Bernard ULg et al

Poster (2013, January 28)

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailHeterologously expressed formyl peptide receptor 2 (FPR2/ALX) does not respond to lipoxin A4
Hanson, Julien ULg; Ferreiros, Nerea; Pirotte, Bernard ULg et al

in Biochemical Pharmacology (2013), 85

Detailed reference viewed: 17 (3 ULg)
Peer Reviewed
See detailDevelopment of original 2-aryloxy/arylamino-5-cyanobenzenesulfonylureas as thromboxane A2 receptor antagonists
Bambi Nyanguile, Sylvie-Mireille ULg; Hanson, Julien ULg; Dogné, Jean-Michel et al

Poster (2012, August)

A series of novel 2-aryloxy/arylamino-5-cyanobenzenesulfonylureas were synthesized. The newly synthesized compounds were tested in vitro and ex vivo as thromboxane A2 receptor antagonists. Some of the ... [more ▼]

A series of novel 2-aryloxy/arylamino-5-cyanobenzenesulfonylureas were synthesized. The newly synthesized compounds were tested in vitro and ex vivo as thromboxane A2 receptor antagonists. Some of the test compounds showed potent thromboxane A2 receptor antagonist activity. Three compounds (7h, 8h and 8e) were identified as leads for further pharmacological and toxicological studies. [less ▲]

Detailed reference viewed: 32 (2 ULg)
Full Text
Peer Reviewed
See detailRole of HCA₂ (GPR109A) in nicotinic acid and fumaric acid ester-induced effects on the skin
Hanson, Julien ULg; Gille, Andreas; Offermanns, Stefan

in Pharmacology & Therapeutics (2012)

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailBM-573 INHIBITS THE EARLY ATHEROSCLEROTIC LESIONS IN APO-E DEFICIENT MICE BY BLOCKING TP RECEPTORS AND THROMBOXANE SYNTHASE
Cherdon, Céline ULg; Rolin, Stéphanie; Hanson, Julien ULg et al

in Congress of the International Society of Thrombosis and Hemostasis- 57th Annual SSC Meeting (2011, July)

Atherosclerosis is the principal cause of mortality in industrialized countries. Its development is influenced by several mediators of which thromboxane A(2) (TXA(2)) and 8-iso-PGF(2() have recently ... [more ▼]

Atherosclerosis is the principal cause of mortality in industrialized countries. Its development is influenced by several mediators of which thromboxane A(2) (TXA(2)) and 8-iso-PGF(2() have recently received a lot of attention. This study aimed to investigate the effect of a dual thromboxane synthase inhibitor and thromboxane receptor antagonist (BM-573) and ASA on lesion formation in apolipoprotein E-deficient mice. The combination of ASA and BM-573 was also studied. Plasma measurements demonstrated that the treatments did not affect body weight or plasma cholesterol levels. BM-573, but not ASA, significantly decreased atherogenic lesions as demonstrated by macroscopic analysis. Both treatments alone inhibited TXB(2) synthesis but only BM-573 and the combination therapy were able to decrease firstly, plasma levels of soluble intracellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) and secondly, the expression of these proteins in the aortic root of Apo E. These results were confirmed in endothelial cell cultures derived from human saphenous vein endothelial cells (HSVECs). In these cells, BM-573 also prevented the increased mRNA expression of ICAM-1 and VCAM-1 induced by U-46619 and 8-iso-PGF(2(). Our results show that a molecule combining receptor antagonism and thromboxane synthase inhibition is more efficient in delaying atherosclerosis in Apo E(-/-) mice than sole inhibition of TXA(2) formation. [less ▲]

Detailed reference viewed: 59 (9 ULg)
Full Text
Peer Reviewed
See detailMechanism of Nicotinic acid-induced Flushing
Hanson, Julien ULg

Conference (2011, June 10)

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detailBM-573 inhibits the development of early atherosclerotic lesions in Apo E deficient mice by blocking TP receptors and thromboxane synthase.
Cherdon, Céline ULg; Rolin, Stephanie; Hanson, Julien ULg et al

in Prostaglandins & Other Lipid Mediators (2011)

Atherosclerosis is the principal cause of mortality in industrialized countries. Its development is influenced by several mediators of which thromboxane A(2) (TXA(2)) and 8-iso-PGF(2() have recently ... [more ▼]

Atherosclerosis is the principal cause of mortality in industrialized countries. Its development is influenced by several mediators of which thromboxane A(2) (TXA(2)) and 8-iso-PGF(2() have recently received a lot of attention. This study aimed to investigate the effect of a dual thromboxane synthase inhibitor and thromboxane receptor antagonist (BM-573) and ASA on lesion formation in apolipoprotein E-deficient mice. The combination of ASA and BM-573 was also studied. Plasma measurements demonstrated that the treatments did not affect body weight or plasma cholesterol levels. BM-573, but not ASA, significantly decreased atherogenic lesions as demonstrated by macroscopic analysis. Both treatments alone inhibited TXB(2) synthesis but only BM-573 and the combination therapy were able to decrease firstly, plasma levels of soluble intracellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) and secondly, the expression of these proteins in the aortic root of Apo E. These results were confirmed in endothelial cell cultures derived from human saphenous vein endothelial cells (HSVECs). In these cells, BM-573 also prevented the increased mRNA expression of ICAM-1 and VCAM-1 induced by U-46619 and 8-iso-PGF(2(). Our results show that a molecule combining receptor antagonism and thromboxane synthase inhibition is more efficient in delaying atherosclerosis in Apo E(-/-) mice than sole inhibition of TXA(2) formation. [less ▲]

Detailed reference viewed: 53 (8 ULg)
Full Text
Peer Reviewed
See detailNicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials
lukasova, Martina; Hanson, Julien ULg; Tunaru, Sorin et al

in Trends in Pharmacological Sciences (2011)

Detailed reference viewed: 29 (2 ULg)