References of "Hanikenne, Marc"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailChapter 5. Metal homeostasis in plant mitochondria
Vigani, Gianpiero; Hanikenne, Marc ULg

in Logan, David C (Ed.) Plant Mitochondria, a volume in the Annual Plant Reviews series (in press)

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailZinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives
Charlier, Jean_Benoit; Polese, Catherine; Nouet, Cécile ULg et al

in Journal of Experimental Botany (2015)

In Arabidopsis thaliana, FRD3 (Ferric Chelate Reductase Defective 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in ... [more ▼]

In Arabidopsis thaliana, FRD3 (Ferric Chelate Reductase Defective 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary processes underlying the evolution of hyperaccumulation in A. halleri. We combined gene expression studies with the use of GUS and GFP reporter constructs to compare the expression profile, transcriptional and post-transcriptional regulation of FRD3 in both species. The AtFRD3 and AhFRD3 genes display a conserved expression profile. In A. thaliana, alternative transcription initiation sites from two promoters determine transcript variants which are differentially regulated by zinc supply in roots and shoots to favour the most highly translated variant under zinc excess conditions. In A. halleri, a single transcript variant with higher transcript stability and enhanced translation has been maintained. The FRD3 gene thus undergoes complex transcriptional and post-transcriptional regulation in Arabidopsis relatives. Our study reveals that a diverse set of mechanisms underlie increased gene dosage in the A. halleri lineage and illustrates how an environmental challenge can alter gene regulation. [less ▲]

Detailed reference viewed: 5 (0 ULg)
See detailMechanisms of metal hyperaccumulation in A. halleri
Hanikenne, Marc ULg

Scientific conference (2015, February 04)

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailFunctional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri
Nouet, Cécile ULg; Charlier, Jean-Benoit; Carnol, Monique ULg et al

in Journal of Experimental Botany (2015), in press

In Arabidopsis halleri, the AhHMA4 gene has an essential function in Zn/Cd hypertolerance and hyperaccumulation by mediating root to shoot translocation of metals. Constitutive high expression of AhHMA4 ... [more ▼]

In Arabidopsis halleri, the AhHMA4 gene has an essential function in Zn/Cd hypertolerance and hyperaccumulation by mediating root to shoot translocation of metals. Constitutive high expression of AhHMA4 results from a tandem triplication and cis-activation of the promoter of all three copies. The three AhHMA4 copies possess divergent promoter sequences, but highly conserved coding sequences, and display identical expression profiles in the root and shoot vascular system. Here, we expressed an AhHMA4::GFP fusion under the control of each three A. halleri HMA4 promoters in a hma2hma4 double mutant of Arabidopsis thaliana to individually examine the function of each A. halleri AhHMA4 copy. The protein localized non-polarly at the plasma membrane of the root pericycle cells of both A. thaliana and A. halleri. The expression of each AhHMA4::GFP copy complemented the severe Zn deficiency phenotype of the hma2hma4 mutant by restoring root-to-shoot translocation of zinc. However, each copy had different impact on metal homeostasis in the A. thaliana genetic background: AhHMA4 copies 2 and 3 were more highly expressed and provided higher Zn tolerance in roots and accumulation in shoots than copy 1, whereas AhHMA4 copy 3 also increased Cd tolerance in roots. Our data suggest a certain extent of functional differentiation among the three A. halleri HMA4 copies, stemming from differences in expression levels rather than in expression profile. HMA4 is a key node of the Zn homeostasis network and small changes in expression level can have major impact on Zn allocation to root or shoot tissues. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
See detailFunctional analysis of FRD3 in Arabidopsis relatives
Scheepers, Maxime ULg; Charlier, Jean-Benoit ULg; Motte, Patrick ULg et al

Poster (2014, November 28)

Transcriptomic studies identified genes which are constitutively over-expressed in A. halleri compared to A. thaliana and which may have a role in metal tolerance or accumulation (1-3). A candidate gene ... [more ▼]

Transcriptomic studies identified genes which are constitutively over-expressed in A. halleri compared to A. thaliana and which may have a role in metal tolerance or accumulation (1-3). A candidate gene encodes FRD3, a member of the MATE family of membrane transporters (56 members in A. thaliana). It is a citrate transporter involved in iron homeostasis (4-6) and playing a role in zinc tolerance in A. thaliana (7). We are aiming to analyse the FRD3 high expression in A. halleri and the FRD3 function in zinc and iron homeostasis in A. thaliana. [less ▲]

Detailed reference viewed: 38 (10 ULg)
See detailHMA4 and metal hyperaccumulation in Arabidopsis halleri
Hanikenne, Marc ULg

Conference (2014, July 04)

Detailed reference viewed: 25 (3 ULg)
Peer Reviewed
See detailComplex regulation of the FRD3 gene in Arabidopsis relatives
Charlier, Jean Benoit; Polese, Catherine ULg; Nouet, Cécile ULg et al

Poster (2014, March 31)

Detailed reference viewed: 29 (9 ULg)
See detailEpigenetics and local adaptation
Hanikenne, Marc ULg

Conference (2014, January 22)

Detailed reference viewed: 21 (4 ULg)
Full Text
Peer Reviewed
See detailOrigin and evolution of metal P-type ATPases in Plantae (Archaeplastida)
Hanikenne, Marc ULg; Baurain, Denis ULg

in Frontiers in Plant Science (2014), 4

Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two ... [more ▼]

Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium and possibly copper and calcium. So far, few efforts have been devoted to elucidating the origin and evolution of these proteins in Eukaryotes. In this work, we use large-scale phylogenetics to show that metal P-type ATPases form a homogenous group among P-type ATPases and that their specialisation into either monovalent (Cu) or divalent (Zn, Cd…) metal transport stems from a gene duplication that took place early in the evolution of Life. Then, we demonstrate that the four subgroups of plant metal ATPases all have a different evolutionary origin and a specific taxonomic distribution, only one tracing back to the cyanobacterial progenitor of the chloroplast. Finally, we examine the subsequent evolution of these proteins in green plants and conclude that the genes thoroughly characterised in model organisms are often the result of lineage-specific gene duplications, which calls for caution when attempting to infer function from sequence similarity alone in non-model organisms. [less ▲]

Detailed reference viewed: 46 (16 ULg)
Full Text
Peer Reviewed
See detailIon homeostasis in the chloroplast
Hanikenne, Marc ULg; Bernal, Maria; Urzica, Eugen

in Wollman, Francis-Andre; Theg, Steve M. (Eds.) Plastid Biology (2014)

The chloroplast is an organelle of high demand for macro- and micro-nutrient ions, which are required for the maintenance of the photosynthetic process. To avoid deficiency while preventing excess ... [more ▼]

The chloroplast is an organelle of high demand for macro- and micro-nutrient ions, which are required for the maintenance of the photosynthetic process. To avoid deficiency while preventing excess, homeostasis mechanisms must be tightly regulated. Here, we describe the needs for nutrient ions in the chloroplast and briefly highlight their functions in the chloroplastidial metabolism. We further discuss the impact of nutrient deficiency on chloroplasts and the acclimation mechanisms that evolved to preserve the photosynthetic apparatus. We finally present what is known about import and export mechanisms for these ions. Whenever possible, a comparison between cyanobacteria, algae and plants is provided to add an evolutionary perspective to the description of ion homeostasis mechanisms in photosynthesis. [less ▲]

Detailed reference viewed: 18 (3 ULg)
Full Text
See detailIdentifying losses and expansions of selected gene families in incomplete genomic datasets
Di Franco, Arnaud ULg; Hanikenne, Marc ULg; Baurain, Denis ULg

Poster (2013, December 09)

Plantae (Archaeplastida) are a natural group of organisms with plastids of primary endosymbiotic origin. Within this group, members of the red algae show evidence of a reduction of their genomic content ... [more ▼]

Plantae (Archaeplastida) are a natural group of organisms with plastids of primary endosymbiotic origin. Within this group, members of the red algae show evidence of a reduction of their genomic content. In this work, we designed a bioinformatics approach to investigate the few, sometimes incomplete, genomic datasets available for red algae, with the purpose of pointing out possible gene family losses and expansions. Our pipeline first populates a relational database with precomputed orthology relationships between green plant genomes and red algal datasets and then efficiently queries the database for computing statistics of losses and expansions for a series of gene families of interest. [less ▲]

Detailed reference viewed: 26 (2 ULg)
See detailMetal homeostasis in plants: what can we learn from zinc hyperaccumulators?
Hanikenne, Marc ULg

Conference (2013, February 26)

Detailed reference viewed: 3 (0 ULg)