References of "Haniff, C"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFirst-light LBT Nulling Interferometric Observations: Warm Exozodiacal Dust Resolved within a Few AU of eta Crv
Defrere, D.; Hinz, P. M.; Skemer, A. J. et al

in Astrophysical Journal (2015), 799

We report on the first nulling interferometric observations with the Large Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81-12.41 μm) emission around the nearby main-sequence star η ... [more ▼]

We report on the first nulling interferometric observations with the Large Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81-12.41 μm) emission around the nearby main-sequence star η Crv (F2V, 1-2 Gyr). The measured source null depth amounts to 4.40% ± 0.35% over a field-of-view of 140 mas in radius (~2.6 AU for the distance of η Crv) and shows no significant variation over 35° of sky rotation. This relatively low null is unexpected given the total disk to star flux ratio measured by the Spitzer Infrared Spectrograph (IRS; ~23% across the N' band), suggesting that a significant fraction of the dust lies within the central nulled response of the LBTI (79 mas or 1.4 AU). Modeling of the warm disk shows that it cannot resemble a scaled version of the solar zodiacal cloud unless it is almost perpendicular to the outer disk imaged by Herschel. It is more likely that the inner and outer disks are coplanar and the warm dust is located at a distance of 0.5-1.0 AU, significantly closer than previously predicted by models of the IRS spectrum (~3 AU). The predicted disk sizes can be reconciled if the warm disk is not centrosymmetric, or if the dust particles are dominated by very small grains. Both possibilities hint that a recent collision has produced much of the dust. Finally, we discuss the implications for the presence of dust for the distance where the insolation is the same as Earth's (2.3 AU). [less ▲]

Detailed reference viewed: 16 (2 ULg)
Full Text
See detailThe Hunt for Observable Signatures of Terrestrial Planetary Systems (HOSTS)
Defrere, D.; Hinz, P.; Bryden, G. et al

Conference (2014, March)

The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for ... [more ▼]

The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for biosignatures (Roberge et al. 2012). However, it is also considered as a signpost for the presence of terrestrial planets that might be hidden in the dust disk (Stark and Kuchner 2008). Characterizing exozodiacal dust around nearby sequence stars is therefore a crucial step toward one of the main goals of modern astronomy: finding extraterrestrial life. After briefly reviewing the latest results in this field, we present the exozodiacal dust survey on the Large Binocular Telescope Interferometer (LBTI). The survey is called HOSTS and is specifically designed to determine the prevalence and brightness of exozodiacal dust disks with the sensitivity required to prepare for future New Worlds Missions that will image Earth-like exoplanets. To achieve this objective, the LBTI science team has carefully established a balanced list of 50 nearby main-sequence stars that are likely candidates of these missions and/or can be observed with the best instrument performance (see companion abstract by Roberge et al.). Exozodiacal dust disk candidates detected by the Keck Interferometer Nuller will also be observed. The first results of the survey will be presented. To precisely detect exozodiacal dust, the LBTI combines the two 8-m primary mirrors of the LBT using N-band nulling interferometry. Interferometric combination provides the required angular resolution (70-90 mas) to resolve the habitable zone of nearby main sequence stars while nulling is used to subtract the stellar light and reach the required contrast of a few 10-4. A Kband fringe tracker ensures the stability of the null. The current performance of the instrument and the first nulling measurements will be presented. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailPlanet Formation Imager (PFI): Introduction and technical considerations
Monnier, J. D.; Kraus, S.; Buscher, D. et al

in Proceedings of SPIE - The International Society for Optical Engineering (2014), 9146

Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming ... [more ▼]

Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming into focus. High resolution imaging at a range of wavelengths will give us a glimpse into the past of our own solar system and enable a robust theoretical framework for predicting planetary system architectures around a range of stars surrounded by disks with a diversity of initial conditions. Only long-baseline interferometry can provide the needed angular resolution and wavelength coverage to reach these goals and from here we launch our planning efforts. The aim of the "Planet Formation Imager" (PFI) project is to develop the roadmap for the construction of a new near-/mid-infrared interferometric facility that will be optimized to unmask all the major stages of planet formation, from initial dust coagulation, gap formation, evolution of transition disks, mass accretion onto planetary embryos, and eventual disk dispersal. PFI will be able to detect the emission of the cooling, newlyformed planets themselves over the first 100 Myrs, opening up both spectral investigations and also providing a vibrant look into the early dynamical histories of planetary architectures. Here we introduce the Planet Formation Imager (PFI) Project (www.planetformationimager.org) and give initial thoughts on possible facility architectures and technical advances that will be needed to meet the challenging top-level science requirements. © 2014 SPIE. [less ▲]

Detailed reference viewed: 4 (2 ULg)
Full Text
Peer Reviewed
See detailThe science case for the Planet Formation Imager (PFI)
Kraus, S.; Monnier, J.; Harries, T. et al

in Proceedings of SPIE - The International Society for Optical Engineering (2014), 9146

Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar ... [more ▼]

Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work has already been, and is still being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project (PFI; http://www.planetformationimager.org) has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planethosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI. For this purpose, we briefly review our knowledge about the planet-formation process and discuss recent observational results that have been obtained on the class of transition disks. Spectro-photometric and multi-wavelength interferometric studies of these systems revealed the presence of extended gaps and complex density inhomogeneities that might be triggered by orbiting planets. We present detailed 3-D radiation-hydrodynamic simulations of disks with single and multiple embedded planets, from which we compute synthetic images at near-infrared, mid-infrared, far-infrared, and sub-millimeter wavelengths, enabling a direct comparison of the signatures that are detectable with PFI and complementary facilities such as ALMA. From these simulations, we derive some preliminary specifications that will guide the array design and technology roadmap of the facility. © 2014 SPIE. [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
See detailMilli-arcsecond Astrophysics with VSI, the VLTI Spectro-imager in the ELT Era
Malbet, F.; Buscher, D.; Weigelt, G. et al

in Moorwood, Alan (Ed.) Science with the VLT in the ELT Era (2009)

Nowadays, compact sources relatively warm like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be ... [more ▼]

Nowadays, compact sources relatively warm like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be investigated at milli-arcsecond scales only with the VLT in its interferometric mode. We propose a spectro-imager, named VSI (VLTI spectro-imager), which is capable to probe these sources both over spatial and spectral scales in the near-infrared domain. This instrument will provide information complementary to what is obtained at the same time with ALMA at different wavelengths and the extreme large telescopes. [less ▲]

Detailed reference viewed: 62 (12 ULg)
Full Text
See detailVSI: the VLTI spectro-imager
Malbet, F.; Buscher, D.; Weigelt, G. et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at ... [more ▼]

The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at angular resolutions down to 1.1 milliarcsecond and spectral resolutions up to R = 12000. Targets as faint as K = 13 will be imaged without requiring a brighter nearby reference object; fainter targets can be accessed if a suitable reference is available. The unique combination of high-dynamic-range imaging at high angular resolution and high spectral resolution enables a scientific program which serves a broad user community and at the same time provides the opportunity for breakthroughs in many areas of astrophysics. The high level specifications of the instrument are derived from a detailed science case based on the capability to obtain, for the first time, milliarcsecond-resolution images of a wide range of targets including: probing the initial conditions for planet formation in the AU-scale environments of young stars; imaging convective cells and other phenomena on the surfaces of stars; mapping the chemical and physical environments of evolved stars, stellar remnants, and stellar winds; and disentangling the central regions of active galactic nuclei and supermassive black holes. VSI will provide these new capabilities using technologies which have been extensively tested in the past and VSI requires little in terms of new infrastructure on the VLTI. At the same time, VSI will be able to make maximum use of new infrastructure as it becomes available; for example, by combining 4, 6 and eventually 8 telescopes, enabling rapid imaging through the measurement of up to 28 visibilities in every wavelength channel within a few minutes. The current studies are focused on a 4-telescope version with an upgrade to a 6-telescope one. The instrument contains its own fringe tracker and tip-tilt control in order to reduce the constraints on the VLTI infrastructure and maximize the scientific return. [less ▲]

Detailed reference viewed: 69 (7 ULg)
Full Text
See detailSystem overview of the VLTI Spectro-Imager
Jocou, L.; Berger, J.-P.; Malbet, F. et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

The VLTI Spectro Imager project aims to perform imaging with a temporal resolution of 1 night and with a maximum angular resolution of 1 milliarcsecond, making best use of the Very Large Telescope ... [more ▼]

The VLTI Spectro Imager project aims to perform imaging with a temporal resolution of 1 night and with a maximum angular resolution of 1 milliarcsecond, making best use of the Very Large Telescope Interferometer capabilities. To fulfill the scientific goals (see Garcia et. al.), the system requirements are: a) combining 4 to 6 beams; b) working in spectral bands J, H and K; c) spectral resolution from R= 100 to 12000; and d) internal fringe tracking on-axis, or off-axis when associated to the PRIMA dual-beam facility. The concept of VSI consists on 6 sub-systems: a common path distributing the light between the fringe tracker and the scientific instrument, the fringe tracker ensuring the co-phasing of the array, the scientific instrument delivering the interferometric observables and a calibration tool providing sources for internal alignment and interferometric calibrations. The two remaining sub-systems are the control system and the observation support software dedicated to the reduction of the interferometric data. This paper presents the global concept of VSI science path including the common path, the scientific instrument and the calibration tool. The scientific combination using a set of integrated optics multi-way beam combiners to provide high-stability visibility and closure phase measurements are also described. Finally we will address the performance budget of the global VSI instrument. The fringe tracker and scientific spectrograph will be shortly described. [less ▲]

Detailed reference viewed: 7 (0 ULg)
See detailCurrent generation arrays: current status, getting the most out of them and future development
Akeson, R.; ten Brummelaar, T.; Eisner, J. et al

in “Future Directions for Interferometry” (2006)

Detailed reference viewed: 7 (0 ULg)