References of "Hainaut, Olivier"
     in
Bookmark and Share    
Full Text
See detailIsotopic Ratios in a Peculiar Outbursting Comet
Yang, Bin; Hutsemekers, Damien ULiege; Shinnaka, Yoshiharu et al

in Bulletin of the American Astronomical Society (2017, October 01), 49

Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. A newly discovered peculiar comet, C ... [more ▼]

Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. A newly discovered peculiar comet, C/2015 ER61, underwent an outburst with a total brightness increase of 2 magnitudes on the night of April 4th, 2017. The sharp increase in brightness offers a rare opportunity to measure the isotopic ratios of the light elements of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES on Apr. 13 and Apr. 17 respectively. At the time of our observations, the comet was fading gradually since the outburst. We measured the 12C/13C and 14N/15N isotopic ratios from the CN Violet (0,0) band. In addition, we determined the 14N/15N ratio in NH2 for C/2015 ER61 from four pairs of NH2 isotopologue lines. Some 18OH lines were detected but the S/N of these lines is too low to derive a reliable 18O/16O estimate. We will present our UVES spectra of C/2015 ER61, obtained shortly after the outburst. We will also present the comparison of the Isotopic ratios of C/2015 ER61 with those of other comets. [less ▲]

Detailed reference viewed: 15 (1 ULiège)
Full Text
Peer Reviewed
See detailDistant activity of 67P/Churyumov-Gerasimenko in 2014: Ground-based results during the Rosetta pre-landing phase
Snodgrass, Colin; Jehin, Emmanuel ULiege; Manfroid, Jean ULiege et al

in Astronomy and Astrophysics (2016), 588

Context. As the ESA Rosetta mission approached, orbited, and sent a lander to comet 67P/Churyumov-Gerasimenko in 2014, a large campaign of ground-based observations also followed the comet. <BR /> Aims ... [more ▼]

Context. As the ESA Rosetta mission approached, orbited, and sent a lander to comet 67P/Churyumov-Gerasimenko in 2014, a large campaign of ground-based observations also followed the comet. <BR /> Aims: We constrain the total activity level of the comet by photometry and spectroscopy to place Rosetta results in context and to understand the large-scale structure of the comet's coma pre-perihelion. <BR /> Methods: We performed observations using a number of telescopes, but concentrate on results from the 8 m VLT and Gemini South telescopes in Chile. We use R-band imaging to measure the dust coma contribution to the comet's brightness and UV-visible spectroscopy to search for gas emissions, primarily using VLT/FORS. In addition we imaged the comet in near-infrared wavelengths (JHK) in late 2014 with Gemini-S/Flamingos-2. <BR /> Results: We find that the comet was already active in early 2014 at heliocentric distances beyond 4 au. The evolution of the total activity (measured by dust) followed previous predictions. No gas emissions were detected despite sensitive searches. <BR /> Conclusions: The comet maintains a similar level of activity from orbit to orbit, and is in that sense predictable, meaning that Rosetta results correspond to typical behaviour for this comet. The gas production (for CN at least) is highly asymmetric with respect to perihelion, as our upper limits are below the measured production rates for similar distances post-perihelion in previous orbits. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme IDs 592.C-0924, 093.C-0593, 094.C-0054, and at Gemini South under GS-2014B-Q-15 and GS-2014B-Q-76. [less ▲]

Detailed reference viewed: 24 (3 ULiège)
Full Text
See detailDynamical modeling of the Deep Impact dust ejecta cloud
Bonev, Tanyu; Ageorges, Nancy; Bagnulo, Stefano et al

Report (2007)

The collision of Deep Impact with comet 9P/Tempel 1 generated a bright cloud of dust which dissipated during several days after the impact. The brightness variations of this cloud and the changes of its ... [more ▼]

The collision of Deep Impact with comet 9P/Tempel 1 generated a bright cloud of dust which dissipated during several days after the impact. The brightness variations of this cloud and the changes of its position and shape are governed by the physical properties of the dust grains. We use a Monte Carlo model to describe the evolution of the post-impact dust plume. The results of our dynamical simulations are compared to the data obtained with FORS2, the FOcal Reducer and low dispersion Spectrograph for the VLT of the European Southern Observatory (ESO), to derive the particle size distribution and the total amount of material contained in the dust ejecta cloud. [less ▲]

Detailed reference viewed: 32 (2 ULiège)
Full Text
See detailDeep Impact at ESO Telescopes
Kaufl, Hans-Ullrich; Ageorges, Nancy; Bagnulo, Stefano et al

in The Messenger (2005), 121

This article is a first summary of the observations done with ESO telescopes and instrumentation in the context of NASA's Deep Impact (DI) space mission. The ESO observers were part of an extremely active ... [more ▼]

This article is a first summary of the observations done with ESO telescopes and instrumentation in the context of NASA's Deep Impact (DI) space mission. The ESO observers were part of an extremely active, communicative and thus successful worldwide network of observers. Through this network all information was freely exchanged and highlights are reported here as well. [less ▲]

Detailed reference viewed: 25 (2 ULiège)