References of "Hadfield, Tracy"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEctopic Expression of Retrotransposon-Derived PEG11/RTL1 Contributes to the Callipyge Muscular Hypertrophy.
Xu, Xuewen; Ectors, Fabien ULg; Davis, Erica E. et al

in PloS one (2015), 10(10), 0140594

The callipyge phenotype is an ovine muscular hypertrophy characterized by polar overdominance: only heterozygous +Mat/CLPGPat animals receiving the CLPG mutation from their father express the phenotype ... [more ▼]

The callipyge phenotype is an ovine muscular hypertrophy characterized by polar overdominance: only heterozygous +Mat/CLPGPat animals receiving the CLPG mutation from their father express the phenotype. +Mat/CLPGPat animals are characterized by postnatal, ectopic expression of Delta-like 1 homologue (DLK1) and Paternally expressed gene 11/Retrotransposon-like 1 (PEG11/RTL1) proteins in skeletal muscle. We showed previously in transgenic mice that ectopic expression of DLK1 alone induces a muscular hypertrophy, hence demonstrating a role for DLK1 in determining the callipyge hypertrophy. We herein describe newly generated transgenic mice that ectopically express PEG11 in skeletal muscle, and show that they also exhibit a muscular hypertrophy phenotype. Our data suggest that both DLK1 and PEG11 act together in causing the muscular hypertrophy of callipyge sheep. [less ▲]

Detailed reference viewed: 25 (10 ULg)
Full Text
Peer Reviewed
See detailExperimental evaluation does not reveal a direct effect of microRNA from the callipyge locus on DLK1 expression.
Cheng, Huijun ULg; Xu, Xuewen; Hadfield, Tracy et al

in BMC genomics (2014), 15

BACKGROUND: Polar overdominance at the ovine callipyge (CLPG) locus involves the post-transcriptional trans-inhibition of DLK1 in skeletal muscle of CLPG/CLPG sheep. The abundant maternally expressed ... [more ▼]

BACKGROUND: Polar overdominance at the ovine callipyge (CLPG) locus involves the post-transcriptional trans-inhibition of DLK1 in skeletal muscle of CLPG/CLPG sheep. The abundant maternally expressed microRNAs (miRNAs) mapping to the imprinted DLK1-GTL2 domain are prime candidate mediators of this trans-effect. RESULTS: We have tested the affinity of 121 miRNAs processed from this locus for DLK1 by co-transfecting COS1 cells with a vector expressing the full-length ovine DLK1 with corresponding mimic miRNAs. None of the tested miRNAs was able to down regulate DLK1 to the extent observed in vivo. CONCLUSIONS: This suggests that other factors, with or without these miRNAs, are involved in mediating the observed trans-effect. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailAssessing the effect of the CLPG mutation on the microRNA catalog of skeletal muscle using high-throughput sequencing.
Caiment, Florian ULg; Charlier, Carole ULg; Hadfield, Tracy et al

in Genome Research (2010), 20(12), 1651-62

The callipyge phenotype is a monogenic muscular hypertrophy that is only expressed in heterozygous sheep receiving the CLPG mutation from their sire. The wild-type phenotype of CLPG/CLPG animals is ... [more ▼]

The callipyge phenotype is a monogenic muscular hypertrophy that is only expressed in heterozygous sheep receiving the CLPG mutation from their sire. The wild-type phenotype of CLPG/CLPG animals is thought to result from translational inhibition of paternally expressed DLK1 transcripts by maternally expressed miRNAs. To identify the miRNA responsible for this trans effect, we used high-throughput sequencing to exhaustively catalog miRNAs expressed in skeletal muscle of sheep of the four CLPG genotypes. We have identified 747 miRNA species of which 110 map to the DLK1-GTL2 or callipyge domain. We demonstrate that the latter are imprinted and preferentially expressed from the maternal allele. We show that the CLPG mutation affects their level of expression in cis ( approximately 3.2-fold increase) as well as in trans ( approximately 1.8-fold increase). In CLPG/CLPG animals, miRNAs from the DLK1-GTL2 domain account for approximately 20% of miRNAs in skeletal muscle. We show that the CLPG genotype affects the levels of A-to-I editing of at least five pri-miRNAs of the DLK1-GTL2 domain, but that levels of editing of mature miRNAs are always minor. We present suggestive evidence that the miRNAs from the domain target the ORF of DLK1, thereby causing the trans inhibition underlying polar overdominance. We highlight the limitations of high-throughput sequencing for digital gene expression profiling as a result of biased and inconsistent amplification of specific miRNAs. [less ▲]

Detailed reference viewed: 35 (6 ULg)