References of "Habraken, Serge"
     in
Bookmark and Share    
Full Text
See detailCubesats activities at the University of Liège
Werner, Xavier ULg; Broun, Valery ULg; De Dijcker, Sébastien ULg et al

Conference given outside the academic context (2017)

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailCalibration and testing of wide-field UV instruments
Frey, Harald; Mende, Stephen; Loicq, Jerôme ULg et al

in Journal of Geophysical Research. Space Physics (2017), 122

As with all optical systems the calibration of wide-field ultraviolet (UV) systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes UV calibrations ... [more ▼]

As with all optical systems the calibration of wide-field ultraviolet (UV) systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes UV calibrations difficult is the need for working in vacuum substantially extending the required time and effort compared to visible systems. In theory a ray tracing and characterization of each individual component of the optical system (mirrors, windows, and grating) should provide the transmission efficiency of the combined system. However, potentially unknown effects (contamination, misalignment, and measurement errors) can make the final error too large and unacceptable for most applications. Therefore, it is desirable to test and measure the optical properties of the whole system in vacuum and compare the overall response to the response of a calibrated photon detector. A proper comparison then allows the quantification of individual sources of uncertainty and ensures that the whole instrument performance is within acceptable tolerances or pinpoints which parts fail to meet requirements. Based on the experience with the IMAGE Spectrographic Imager, the Wide-band Imaging Camera, and the ICON Far Ultraviolet instruments, we discuss the steps and procedures for the proper radiometric sensitivity and passband calibration, spot size, imaging distortions, flatfield, and field of view determination. [less ▲]

Detailed reference viewed: 19 (1 ULg)
Full Text
Peer Reviewed
See detailThe W. M. Keck Observatory infrared vortex coronagraph and a first image of HIP79124 B
Serabyn, Eugene; Huby, Elsa ULg; Matthews, Keith et al

in Astronomical Journal (The) (2017), 153(1), 43

An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L'-band observational ... [more ▼]

An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L'-band observational mode is described, and an initial demonstration of the new capability is presented: a resolved image of the low-mass companion to HIP79124, which had previously been detected by means of interferometry. With HIP79124 B at a projected separation of 186.5 mas, both the small inner working angle of the vortex coronagraph and the related imaging improvements were crucial in imaging this close companion directly. Due to higher Strehl ratios and more relaxed contrasts in L' band versus H band, this new coronagraphic capability will enable high-contrast small-angle observations of nearby young exoplanets and disks on a par with those of shorter-wavelength extreme adaptive optics coronagraphs. [less ▲]

Detailed reference viewed: 36 (7 ULg)
Full Text
Peer Reviewed
See detailCharacterization of the inner disk around HD 141569 A from Keck/NIRC2 L-band vortex coronagraphy
Mawet, Dimitri; Choquet, Élodie; Absil, Olivier ULg et al

in Astronomical Journal (The) (2017), 153(1), 44

HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a ... [more ▼]

HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L' band (3.8 micron) during the commissioning of the vector vortex coronagraph recently installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point spread function subtraction, which reveals the innermost disk component from the inner working distance of $\simeq 23$ AU and up to $\simeq 70$ AU. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N and 8.6 micron PAH emission reported earlier. We also see an outward progression in dust location from the L'-band to the H-band (VLT/SPHERE image) to the visible (HST/STIS image), likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST NICMOS in 1999 (respectively at 406 and 245 AU). We fit our new L'-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains, and are consistent with the composition of the outer belts. While our image shows a putative very-faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses. [less ▲]

Detailed reference viewed: 39 (9 ULg)
Full Text
Peer Reviewed
See detailDiscovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893
Milli, J.; Hibon, P.; Christiaens, Valentin ULg et al

in Astronomy and Astrophysics (2017), 597

<BR /> Aims: Uncovering the ingredients and the architecture of planetary systems is a very active field of research that has fuelled many new theories on giant planet formation, migration, composition ... [more ▼]

<BR /> Aims: Uncovering the ingredients and the architecture of planetary systems is a very active field of research that has fuelled many new theories on giant planet formation, migration, composition, and interaction with the circumstellar environment. We aim at discovering and studying new such systems, to further expand our knowledge of how low-mass companions form and evolve. <BR /> Methods: We obtained high-contrast H-band images of the circumstellar environment of the F5V star HD 206893, known to host a debris disc never detected in scattered light. These observations are part of the SPHERE High Angular Resolution Debris Disc Survey (SHARDDS) using the InfraRed Dual-band Imager and Spectrograph (IRDIS) installed on VLT/SPHERE. <BR /> Results: We report the detection of a source with a contrast of 3.6 × 10[SUP]-5[/SUP] in the H-band, orbiting at a projected separation of 270 milliarcsec or 10 au, corresponding to a mass in the range 24 to 73 M[SUB]Jup[/SUB] for an age of the system in the range 0.2 to 2 Gyr. The detection was confirmed ten months later with VLT/NaCo, ruling out a background object with no proper motion. A faint extended emission compatible with the disc scattered light signal is also observed. <BR /> Conclusions: The detection of a low-mass companion inside a massive debris disc makes this system an analog of other young planetary systems such as β Pictoris, HR 8799 or HD 95086 and requires now further characterisation of both components to understand their interactions. [less ▲]

Detailed reference viewed: 21 (6 ULg)
Full Text
Peer Reviewed
See detailOptimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance
Vargas Catalán, E.; Huby, Elsa ULg; Forsberg, P. et al

in Astronomy and Astrophysics (2016), 595

Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several ... [more ▼]

Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several years, we have been manufacturing AGPMs by etching gratings into synthetic diamond substrates using inductively coupled plasma etching. <BR /> Aims: We aim to design, fabricate, optimize, and evaluate new L-band AGPMs that reach the highest possible coronagraphic performance, for applications in current and forthcoming infrared high-contrast imagers. <BR /> Methods: Rigorous coupled wave analysis (RCWA) is used for designing the subwavelength grating of the phase mask. Coronagraphic performance evaluation is performed on a dedicated optical test bench. The experimental results of the performance evaluation are then used to accurately determine the actual profile of the fabricated gratings, based on RCWA modeling. <BR /> Results: The AGPM coronagraphic performance is very sensitive to small errors in etch depth and grating profile. Most of the fabricated components therefore show moderate performance in terms of starlight rejection (a few 100:1 in the best cases). Here we present new processes for re-etching the fabricated components in order to optimize the parameters of the grating and hence significantly increase their coronagraphic performance. Starlight rejection up to 1000:1 is demonstrated in a broadband L filter on the coronagraphic test bench, which corresponds to a raw contrast of about 10[SUP]-5[/SUP] at two resolution elements from the star for a perfect input wave front on a circular, unobstructed aperture. <BR /> Conclusions: Thanks to their exquisite performance, our latest L-band AGPMs are good candidates for installation in state of the art and future high-contrast thermal infrared imagers, such as METIS for the E-ELT. [less ▲]

Detailed reference viewed: 28 (6 ULg)
Full Text
See detailEnd-to-end simulations of the E-ELT/METIS coronagraphs
Carlomagno, Brunella ULg; Absil, Olivier ULg; Kenworthy, Matthew et al

in Marchetti, E.; Close, L.; Véran, J.-P. (Eds.) Adaptive Optics Systems V (2016, July 27)

The direct detection of low-mass planets in the habitable zone of nearby stars is an important science case for future E-ELT instruments such as the mid-infrared imager and spectrograph METIS, which ... [more ▼]

The direct detection of low-mass planets in the habitable zone of nearby stars is an important science case for future E-ELT instruments such as the mid-infrared imager and spectrograph METIS, which features vortex phase masks and apodizing phase plates (APP) in its baseline design. In this work, we present end-to-end performance simulations, using Fourier propagation, of several METIS coronagraphic modes, including focal-plane vortex phase masks and pupil-plane apodizing phase plates, for the centrally obscured, segmented E-ELT pupil. The atmosphere and the AO contributions are taken into account. Hybrid coronagraphs combining the advantages of vortex phase masks and APPs are considered to improve the METIS coronagraphic performance. [less ▲]

Detailed reference viewed: 25 (4 ULg)
Full Text
See detailThree years of harvest with the vector vortex coronagraph in the thermal infrared
Absil, Olivier ULg; Mawet, D.; Karlsson, M. et al

in Evans, C.; Simard, L.; Takami, H. (Eds.) Ground-based and Airborne Instrumentation for Astronomy VI (2016, June 26)

For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to ... [more ▼]

For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 μm). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications. [less ▲]

Detailed reference viewed: 34 (14 ULg)
Full Text
Peer Reviewed
See detailDESIGN AND MODELIZATION OF ACONVEX GRATING FOR AN HYPERSPECTRAL IMAGER OF THE CHANDRAYAAN 2 INSTRUMENT FOR THE MOON PROBE IN THE INFRARED
Sabushimike, Bernard ULg; Horugavye, Georges ULg; Piron, Pierre ULg et al

in International Journal of Latest Research in Science and Technology (2016), 5(2), 69-74

For hyperspectral imaging, diffraction gratings based spectrometers exhibit high spectral resolution and optical performance. Among those spectrometers, the Offner type (which consists of an entrance slit ... [more ▼]

For hyperspectral imaging, diffraction gratings based spectrometers exhibit high spectral resolution and optical performance. Among those spectrometers, the Offner type (which consists of an entrance slit, two concave mirrors and convex grating) offers a lot of advantages. In this paper, we propose the design and modelization of a convex grating which covers a spectral band ranging from 0.7 μm to 5 μm with a minimum diffraction efficiency of 20% at 800 nm, 50% at 3000 nm and 25% at 5000 nm. For a so wide band, a grating with a single blaze cannot satisfy these requirements. We will therefore propose an approach of multi-blaze grating which is subdivided into different sections each with its own blaze angle. Meanwhile, we perform the diffraction efficiency prediction using the scalar and rigorous theories to prove the compliance of this design with the technical specifications. The rigorous theory will also allow us to study the polarization sensitivity of this grating and the calculation of the diffraction efficiency of a grating with a profile degraded by manufacturing errors to assess the impact on the diffraction efficiency and the sensitivity to polarization [less ▲]

Detailed reference viewed: 63 (23 ULg)
Full Text
See detailPerformance evaluation of mid-IR vortex coronagraphs with centrally obscured segmented pupils
Carlomagno, Brunella ULg; Absil, Olivier ULg; Ruane, Garreth J. et al

Poster (2015, October)

In its original design, the E-ELT/Metis instrument envisages a vortex coronagraph in the mid-IR regime for detection and characterization of exoplanets, with a contrast of 1e-4 at 2 lambda/D (~40 mas in L ... [more ▼]

In its original design, the E-ELT/Metis instrument envisages a vortex coronagraph in the mid-IR regime for detection and characterization of exoplanets, with a contrast of 1e-4 at 2 lambda/D (~40 mas in L band). The AGPM (Annular Groove Phase Mask) is a vortex phase mask with impressive characteristics: small inner working angle, high throughput, achromaticity. A non-perfectly circular pupil and non-flat input wavefront result in a starlight leakage, degrading the performance of the vortex coronagraph. In this work, we present end-to-end performance simulations using Fourier optical propagation to determine the quality of the starlight rejection obtained with an infrared vortex coronagraph. We first analyse the performance facing E-ELT pupil variations (segmentations, central obscuration, spiders, missing segments), then pointing jitter and random adaptive optics residual phase screens are introduced to derive more realistic performance. Finally, more advanced concepts of the infrared vortex coronagraph are presented, in order to compensate for performance degradation. [less ▲]

Detailed reference viewed: 33 (5 ULg)
Full Text
See detailA Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency
Piron, Pierre ULg; Delacroix, Christian; Huby, Elsa ULg et al

in Shaklan, Stuart (Ed.) Techniques and Instrumentation for Detection of Exoplanets VII (2015, September 11)

The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a ... [more ▼]

The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed. [less ▲]

Detailed reference viewed: 41 (10 ULg)
Full Text
Peer Reviewed
See detailOptical study of diffraction grating/Fresnel lens combinations applied to a spectral-splitting solar concentrator for space applications
Michel, Céline ULg; Loicq, Jerôme ULg; Thibert, Tanguy ULg et al

in Applied Optics (2015), 54(22), 6666-6673

This paper presents a new design of a planar solar concentrator with spectral splitting of light for space applications. This concentrator spectrally splits the incident light into mainly two parts. Each ... [more ▼]

This paper presents a new design of a planar solar concentrator with spectral splitting of light for space applications. This concentrator spectrally splits the incident light into mainly two parts. Each part is then focused onto specific spatially separated photovoltaic cells, allowing for independent control of respective cells output power. These advantages of both spectral splitting and light focusing are here combined thanks to a specific diffraction grating superimposed on a Fresnel lens. The theoretical principle of the optical design is presented, with optimization of each element and improvement steps, including optimization of grating period evolution along the lens, and testing of two kinds of gratings (a blazed and a lamellar one). First numerical results are presented, highlighting the possibility to design a concentrator at about 10× or more for each cell, with an output power larger than that of a classical concentrator focusing on a GaAs SJ cell, and less than 10% of losses for tracking errors up to ±0.8°. Some experimental results are also presented. [less ▲]

Detailed reference viewed: 72 (18 ULg)
Full Text
See detailDirect exoplanet imaging with small-angle Vortex coronagraphs
Defrere, Denis ULg; Absil, Olivier ULg; Mawet, D. et al

Conference (2015, July 16)

Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They enhance the dynamic range at very small inner working angle ... [more ▼]

Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They enhance the dynamic range at very small inner working angle (down to the diffraction limit of the telescope) and provide a clear 360 degree discovery space for high-contrast direct imaging of exoplanets. In this talk, we will report on the first scientific results obtained with Vortex coronagraphs installed on 10-m class telescopes (i.e., the VLT and the LBT) and on the recent installation of one Vortex at Keck. We will describe the in-lab and on-sky performance of the Vortex, and describe the lessons learned after a few years of operation. Finally, we will discuss the prospects of our vortices for future extremely large telescopes and space missions. [less ▲]

Detailed reference viewed: 24 (3 ULg)
Full Text
Peer Reviewed
See detailPolarization holography for vortex retarders recording: laboratory demonstration
Piron, Pierre ULg; Blain, Pascal ULg; Décultot, Marc ULg et al

in Applied Optics (2015), 54(15), 4765--4770

This paper will present a prototype of the first set of vortex retarders made of liquid crystal polymers recorded by polarization holography. Vortex retarders are birefringent plates characterized by a ... [more ▼]

This paper will present a prototype of the first set of vortex retarders made of liquid crystal polymers recorded by polarization holography. Vortex retarders are birefringent plates characterized by a rotation of their fast axis. Liquid crystals possess birefringent properties and they are locally orientable. Their orientation is defined by the perpendicular to the local orientation of the recording field. Polarization holography is a purely optical recording method. It is based on the superimposition of coherent and differently polarized beams. It is used to shape the electric field pattern to enable the recording of vortex retarders. The paper details the mathematical model of the superimposition process. The recording setup is exposed; it is characterized by a nearly common path interferometer. Two sets of measurements allowing the prediction of the retarder’s features are presented and compared. Finally, the experimentally recorded retarder is shown, its characteristics are investigated and compared to the predicted ones. [less ▲]

Detailed reference viewed: 38 (19 ULg)
Full Text
See detailOptical Study of a Spectrum Splitting Solar Concentrator based on a Combination of a Diffraction Grating and a Fresnel Lens
Michel, Céline ULg; Loicq, Jerôme ULg; Thibert, Tanguy ULg et al

Poster (2015, April 14)

This poster presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a ... [more ▼]

This poster presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, and the description of an experimental realization highlighting the feasibility of the concept, and the closeness of theoretical and experimental results. [less ▲]

Detailed reference viewed: 44 (10 ULg)
Peer Reviewed
See detailCalibration and testing of wide-field UV instruments
Frey, Harald; Mende, Stephen; Loicq, Jerôme ULg et al

Conference (2015, April)

As with all optical systems the calibration of wide-field ultraviolet systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes these calibrations ... [more ▼]

As with all optical systems the calibration of wide-field ultraviolet systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes these calibrations difficult is the need for working in vacuum substantially extending the required time and effort compared to visible systems. In theory a ray tracing and characterization of each individual component of the optical system (mirrors, windows, grating) should provide the transmission efficiency of the combined system but potential unknown effects (contamination, misalignment, measurement errors) will make the final error too large for most applications. Therefore it is desirable to test and measure the optical properties of the whole system in vacuum and compare the overall response to the response of a calibrated photon detector. Based on the experience with the IMAGE Spectrographic Imager (SI) and Wide-band Imaging Camera (WIC), and the ICON-FUV instrument we will discuss the steps and procedures for the proper radiometric sensitivity and pass-band calibration, spot size, imaging distortions, flat field and field of view determination. [less ▲]

Detailed reference viewed: 30 (5 ULg)
Full Text
Peer Reviewed
See detailExperimental astrochemistry: from ground-based to space-borne laboratories (Foreword)
De Becker, Michaël ULg; Cottin, Hervé; Fleury-Frenette, Karl ULg et al

in Bulletin de la Société Royale des Sciences de Liège (2015, January), 84(4-6),

The investigation of the origin and evolution of molecules in space environments, either in interstellar or interplanetary conditions, constitutes a topic of high importance in modern space sciences. The ... [more ▼]

The investigation of the origin and evolution of molecules in space environments, either in interstellar or interplanetary conditions, constitutes a topic of high importance in modern space sciences. The presence of diversified and complex molecules motivates astrochemists to explore their formation mechanisms along with the physical conditions ruling these physico-chemical processes. Beside theoretical approaches aiming at simulating these processes, experimental techniques are nowadays frequently applied. Both laboratory and space experiment projects allow to reproduce to some extent the adequate conditions to understand some of these processes. The most recent results based on these techniques, and the prospects for future investigations, including the use of space platforms, were the scientific motivation of this workshop. These proceedings summarize a part of the content of this workshop, including abundant references to the relevant bibliography. [less ▲]

Detailed reference viewed: 36 (4 ULg)
Full Text
Peer Reviewed
See detailElucidating the opto-electrical properties of solid and hollow titania scattering layers for improvement of dye-sensitized solar cells
Thalluri, Venkata Visveswara Gopala Kris; Henrist, Catherine ULg; Spronck, Gilles ULg et al

in Thin Solid Films (2015)

The light scattering method has been adapted in dye-sensitized solar cells (DSCs) for optical absorption enhancement. In DSC's, particle-size of TiO2 should be inline with the scattering wavelength range ... [more ▼]

The light scattering method has been adapted in dye-sensitized solar cells (DSCs) for optical absorption enhancement. In DSC's, particle-size of TiO2 should be inline with the scattering wavelength range. Scattering particles can be used either by forming a bilayer structure with TiO2 nanocrystalline film or into the bulk of TiO2 nanocrystalline film. For improving the DSCs performances these scattering layers aim to refract/reflect the incident light by extending the traveling distance of UV-Visible/near-IR light within the dye-sensitized TiO2 nanocrystalline film. In this work, the scattering layers with two different particle-sizes (~200 nm-solid and ~400 nm-hollow) were deposited as an additional layer on the top of dye-sensitized TiO2 nanocrystalline film and the morphological properties were studied. By using various opto-electrical characterization techniques, the influence of these scattering layers for two different classes of DSCs prepared from N3 (UV-Vis) and SQ2 (near-IR) dyes were investigated. [less ▲]

Detailed reference viewed: 58 (20 ULg)
Full Text
Peer Reviewed
See detailOptical Study of a Spectrum Splitting Solar Concentrator based on a Combination of a Diffraction Grating and a Fresnel Lens
Michel, Céline ULg; Loicq, Jerôme ULg; Thibert, Tanguy ULg et al

in AIP Conference Proceedings (2015), 1679

This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a ... [more ▼]

This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, and the description of an experimental realization highlighting the feasibility of the concept and the closeness of theoretical and experimental results. [less ▲]

Detailed reference viewed: 36 (11 ULg)
Full Text
See detailRealizing the diamond annular groove phase masks for the mid infrared region: five years of successful process development of diamond plasma etching
Forsberg, Pontus; Vargas Catalan, Ernesto; Delacroix, Christian ULg et al

in Navarro, Ramon; Cunningham, Colin; Barto, Allison (Eds.) Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation (2014, August 07)

The Annular Groove Phase Mask (AGPM) is a circularly symmetric half wave plate consisting of a circular high aspect ratio sub-wavelength grating. Here we present a method for realizing such structures in ... [more ▼]

The Annular Groove Phase Mask (AGPM) is a circularly symmetric half wave plate consisting of a circular high aspect ratio sub-wavelength grating. Here we present a method for realizing such structures in diamond. To improve the AGPM performance, antireflective sub-wavelength gratings are etched on the backside of the components, and such gratings are also discussed. Components for the N-band (around 10 μm) and the L-band (around 3.8 μm) have been successfully fabricated. We are currently developing the process further to improve the precision of the gratings and produce an AGPM for the K-band (around 2.2 μm). © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. [less ▲]

Detailed reference viewed: 24 (2 ULg)