References of "Guzik, J. A"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHybrid gamma Doradus-delta Scuti Pulsators: New Insights into the Physics of the Oscillations from Kepler Observations
Grigahcène, Ahmed; Antoci, V.; Balona, L. et al

in Astrophysical Journal (2010), 713

Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2-2.5 M [SUB ... [more ▼]

Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2-2.5 M [SUB]sun[/SUB] are particularly useful for these studies. The γ Dor stars pulsate in high-order g-modes with periods of order 1 day, driven by convective blocking at the base of their envelope convection zone. The δ Sct stars pulsate in low-order g- and p-modes with periods of order 2 hr, driven by the κ mechanism operating in the He II ionization zone. Theory predicts an overlap region in the Hertzsprung-Russell diagram between instability regions, where "hybrid" stars pulsating in both types of modes should exist. The two types of modes with properties governed by different portions of the stellar interior provide complementary model constraints. Among the known γ Dor and δ Sct stars, only four have been confirmed as hybrids. Now, analysis of combined Quarter 0 and Quarter 1 Kepler data for hundreds of variable stars shows that the frequency spectra are so rich that there are practically no pure δ Sct or γ Dor pulsators, i.e., essentially all of the stars show frequencies in both the δ Sct and the γ Dor frequency range. A new observational classification scheme is proposed that takes into account the amplitude as well as the frequency and is applied to categorize 234 stars as δ Sct, γ Dor, δ Sct/γ Dor or γ Dor/δ Sct hybrids. [less ▲]

Detailed reference viewed: 19 (2 ULg)
Full Text
Peer Reviewed
See detailThe Asteroseismic Potential of Kepler: First Results for Solar-Type Stars
Chaplin, W. J.; Appourchaux, T.; Elsworth, Y. et al

in Astrophysical Journal Letters (2010), 713

We present preliminary asteroseismic results from Kepler on three G-type stars. The observations, made at one-minute cadence during the first 33.5 days of science operations, reveal high signal-to-noise ... [more ▼]

We present preliminary asteroseismic results from Kepler on three G-type stars. The observations, made at one-minute cadence during the first 33.5 days of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: about 20 modes of oscillation may be clearly distinguished in each star. We discuss the appearance of the oscillation spectra, use the frequencies and frequency separations to provide first results on the radii, masses, and ages of the stars, and comment in the light of these results on prospects for inference on other solar-type stars that Kepler will observe. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailAsteroseismology of solar-type stars with Kepler I: Data analysis
Karoff, C.; Chaplin, W. J.; Appourchaux, T. et al

in Astronomische Nachrichten (2010), 331

We report on the first asteroseismic analysis of solar-type stars observed by Kepler. Observations of three G-type stars, made at one-minute cadence during the first 33.5 days of science operations ... [more ▼]

We report on the first asteroseismic analysis of solar-type stars observed by Kepler. Observations of three G-type stars, made at one-minute cadence during the first 33.5 days of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: About 20 modes of oscillation can clearly be distinguished in each star. We discuss the appearance of the oscillation spectra, including the presence of a possible signature of faculae, and the presence of mixed modes in one of the three stars. [less ▲]

Detailed reference viewed: 19 (2 ULg)
Full Text
Peer Reviewed
See detailKepler observations: Light shed on the hybrid γ Doradus - δ Scuti pulsation phenomenon
Grigahcène, A.; Uytterhoeven, K.; Antoci, V. et al

in Astronomische Nachrichten (2010), 331

Through the observational study of stellar pulsations, the internal structure of stars can be probed and theoretical models can be tested. The main sequence γ Doradus (Dor) and δ Scuti (Sct) stars with ... [more ▼]

Through the observational study of stellar pulsations, the internal structure of stars can be probed and theoretical models can be tested. The main sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2-2.5 M[SUB]ȯ[/SUB] are particularly interesting for asteroseismic study. The γ Dor stars pulsate in high-order gravity (g) modes, with pulsational periods of order of one day. The δ Sct stars, on the other hand, show low-order g and pressure (p) modes with periods of order of 2 hours. Theory predicts the existence of `hybrid' stars, i.e. stars pulsating in both types of modes, in an overlap region between the instability strips of γ Dor and δ Sct stars in the Hertzsprung-Russell diagram. Hybrid stars are particularly interesting as the two types of modes probe different regions of the stellar interior and hence provide complementary model constraints. Before the advent of Kepler, only a few hybrid stars had been confirmed. The {{Kepler}} satellite is providing a true revolution in the study of and search for hybrid stars. Analysis of the first 50 days of {{Kepler}} data of hundreds of γ Dor and δ Sct candidates reveals extremely rich frequency spectra, with most stars showing frequencies in both the δ Sct and γ Dor frequency range. As these results show that there are practically no pure δ Sct or γ Dor pulsators, a new observational classification scheme is proposed by \cite{Grig10}. We present their results and characterize 234 stars in terms of δ Sct, γ Dor, δ Sct/γ Dor or γ Dor/δ Sct hybrids. [less ▲]

Detailed reference viewed: 13 (2 ULg)
Full Text
Peer Reviewed
See detailHelioseismic Tests of the New Los Alamos LEDCOP Opacities
Neuforge-Verheecke, C.; Guzik, J. A.; Keady, J. J. et al

in Astrophysical Journal (2001), 561(1), 450-454

We compare the helioseismic properties of two solar models, one calibrated with the OPAL opacities and the other with the recent Los Alamos LEDCOP (Light Element Detailed Configuration Opacity) opacities ... [more ▼]

We compare the helioseismic properties of two solar models, one calibrated with the OPAL opacities and the other with the recent Los Alamos LEDCOP (Light Element Detailed Configuration Opacity) opacities. We show that, in the radiative interior of the Sun, the small differences between the two sets of opacities (up to 6% near the base of the convection zone) lead to noticeable differences in the solar structure (up to 0.3% in sound speed), with the OPAL model being the closest to the helioseismic data. More than half of the difference between the two opacity sets results from the interpolation scheme and from the relatively widely spaced temperature grids used in the tables. The remaining 3% intrinsic difference between the OPAL and the LEDCOP opacities in the radiative interior of the Sun is well within the error bars on the opacity calculations resulting from the uncertainties on the physics. We conclude that both the OPAL and LEDCOP opacities produce solar models in close agreement with helioseismic inferences, but discrepancies still persist at the level of 0.6% between the calculated and inferred sound speed in the radiative interior of the Sun. [less ▲]

Detailed reference viewed: 4 (0 ULg)