References of "Groenewegen, M. A. T"
     in
Bookmark and Share    
Full Text
See detailHerschel observations of nebulae ejected by massive evolved stars
Vamvatira-Nakou, Chloi ULg; Hutsemekers, Damien ULg; Royer, P. et al

Poster (2013, October)

We have obtained far-infrared Herschel PACS imaging and spectroscopic observations of nebulae associated to massive evolved stars. The study of these nebulae is crucial to understand the evolution of ... [more ▼]

We have obtained far-infrared Herschel PACS imaging and spectroscopic observations of nebulae associated to massive evolved stars. The study of these nebulae is crucial to understand the evolution of these stars as it can reveal the mass-loss history. The infrared images along with available data at other wavelengths give a complete view of their morphology. The dust modeling provides the dust parameters, such as the temperature, the mass and the composition of dust. The spectroscopic analysis provides the gas C,N,O abundances and mass. Based on these observations, the evolutionary status of the star at the time of the nebula ejection can be constrained. We present here selected results of an ongoing exhaustive study of nebulae around low- and high-luminosity LBVs (AG Car, HR Car, WRAY 15-751, G79.29+0.46, HD168625), WN stars (NGC6888, M1-67, He3-519) and Of stars (NGC6164/5). [less ▲]

Detailed reference viewed: 44 (30 ULg)
Full Text
See detailEjecta around evolved massive stars observed with Herschel
Vamvatira-Nakou, Chloi ULg; Hutsemekers, Damien ULg; Royer, P. et al

Conference (2012, March)

Detailed reference viewed: 15 (6 ULg)
Full Text
Peer Reviewed
See detailMESS (Mass-loss of Evolved StarS), a Herschel Key Program
Groenewegen, M. A. T.; Waelkens, C.; Barlow, M. J. et al

in Astronomy and Astrophysics (2011), 526

MESS (Mass-loss of Evolved StarS) is a Guaranteed Time Key Program that uses the PACS and SPIRE instruments on board the Herschel Space Observatory to observe a representative sample of evolved stars ... [more ▼]

MESS (Mass-loss of Evolved StarS) is a Guaranteed Time Key Program that uses the PACS and SPIRE instruments on board the Herschel Space Observatory to observe a representative sample of evolved stars, that include asymptotic giant branch (AGB) and post-AGB stars, planetary nebulae and red supergiants, as well as luminous blue variables, Wolf-Rayet stars and supernova remnants. In total, of order 150 objects are observed in imaging and about 50 objects in spectroscopy. This paper describes the target selection and target list, and the observing strategy. Key science projects are described, and illustrated using results obtained during Herschel's science demonstration phase. Aperture photometry is given for the 70 AGB and post-AGB stars observed up to October 17, 2010, which constitutes the largest single uniform database of far-IR and sub-mm fluxes for late-type stars. [less ▲]

Detailed reference viewed: 50 (28 ULg)
Full Text
See detailResults from the Herschel Key Program MESS
Groenewegen, M. A. T.; Waelkens, C.; Barlow, M. J. et al

in Kerschbaum, F.; Lebzelter, T.; Wing, R. F. (Eds.) Why Galaxies Care about AGB Stars II: Shining Examples and Common Inhabitants. ASPC 445 (2011)

MESS (Mass loss of Evolved StarS) is a Herschel Guaranteed Time Key Program that will image about 100, and do spectroscopy of about 50, post-main-sequence objects of all flavours: AGB stars, post-AGB ... [more ▼]

MESS (Mass loss of Evolved StarS) is a Herschel Guaranteed Time Key Program that will image about 100, and do spectroscopy of about 50, post-main-sequence objects of all flavours: AGB stars, post-AGB stars, planetary nebulae, luminous blue variables, Wolf-Rayet stars, and supernova remnants. In this review the implementation and current status of MESS is outlined, and first results are presented. [less ▲]

Detailed reference viewed: 43 (27 ULg)
Full Text
Peer Reviewed
See detailPost-AGB stars with hot circumstellar dust: binarity of the low-amplitude pulsators
van Winckel, H.; Lloyd Evans, T.; Briquet, Maryline ULg et al

in Astronomy and Astrophysics (2009), 505

Context: The influence of binarity on the late stages of stellar evolution remains an open issue. <BR />Aims: While the first binary post-AGB stars were serendipitously discovered, the distinct ... [more ▼]

Context: The influence of binarity on the late stages of stellar evolution remains an open issue. <BR />Aims: While the first binary post-AGB stars were serendipitously discovered, the distinct characteristics of their spectral energy distribution (SED) allowed us to launch a more systematic search for binaries. We selected post-AGB objects, which exhibit a broad dust excess starting either at H or K, pointing to the presence of a gravitationally bound dusty disc in the system. We initiated an extensive multiwavelength study of those systems and here report on our radial velocity and photometric monitoring results for six stars of early F type, which are pulsators of small amplitude. <BR />Methods: To determine the radial velocity of low signal-to-noise ratio time-series data, we constructed dedicated autocorrelation masks based on high signal-to-noise ratio spectra, used in our published chemical studies. The radial velocity variations were analysed in detail to differentiate between pulsational variability and variability caused by orbital motion. When available, the photometric monitoring data were used to complement the time series of radial velocity data and to establish the nature of the pulsation. Finally, orbital minimalisation was performed to constrain the orbital elements. <BR />Results: All of the six objects are binaries with orbital periods ranging from 120 to 1800 days. Five systems have non-circular orbits. The mass functions range from 0.004 to 0.57 M[SUB]&sun;[/SUB] and the companions are probably unevolved objects of (very) low initial mass. We argue that these binaries must have evolved through a phase of strong binary interaction when the primary was a cool supergiant. Although the origin of the circumstellar disc is not well understood, the disc is generally believed to have formed during this strong interaction phase. The eccentric orbits of these highly evolved objects remain poorly understood. In one object, the line-of-sight grazes the edge of the puffed-up inner rim of the disc. <BR />Conclusions: These results corroborate our earlier statement that evolved objects in binary stars create a Keplerian dusty circumbinary disc. With the measured orbits and mass functions, we conclude that the circumbinary discs seem to have a major impact on the evolution of a significant fraction of binary systems. based on observations collected with the Flemish 1.2 m Mercator telescope at Roque de los Muchachos (Spain), the Swiss 1.2 m Euler telescope at La Silla (Chile) and the 0.5 m and 0.75 m telescopes at SAAO (South-Africa). Tables [see full textsee full text]-[see full textsee full text] are only available in electronic form at http://www.aanda.org Postdoctoral fellow of the Fund for Scientific Research, Flanders. Ph.D. student of the Fund for Scientific Research, Flanders. [less ▲]

Detailed reference viewed: 9 (0 ULg)