References of "Grobarczyk, Benjamin"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGeneration of Isogenic Human iPS Cell Line Precisely Corrected by Genome Editing Using the CRISPR/Cas9 System.
Grobarczyk, Benjamin ULg; Franco, Bénédicte ULg; Hanon, Kevin et al

in Stem cell reviews (2015)

Genome engineering and human iPS cells are two powerful technologies, which can be combined to highlight phenotypic differences and identify pathological mechanisms of complex diseases by providing ... [more ▼]

Genome engineering and human iPS cells are two powerful technologies, which can be combined to highlight phenotypic differences and identify pathological mechanisms of complex diseases by providing isogenic cellular material. However, very few data are available regarding precise gene correction in human iPS cells. Here, we describe an optimized stepwise protocol to deliver CRISPR/Cas9 plasmids in human iPS cells. We highlight technical issues especially those associated to human stem cell culture and to the correction of a point mutation to obtain isogenic iPS cell line, without inserting any resistance cassette. Based on a two-steps clonal isolation protocol (mechanical picking followed by enzymatic dissociation), we succeed to select and expand corrected human iPS cell line with a great efficiency (more than 2 % of the sequenced colonies). This protocol can also be used to obtain knock-out cell line from healthy iPS cell line by the NHEJ pathway (with about 15 % efficiency) and reproduce disease phenotype. In addition, we also provide protocols for functional validation tests after every critical step. [less ▲]

Detailed reference viewed: 12 (3 ULg)
Full Text
Peer Reviewed
See detailUsing human pluripotent stem cells to untangle neurodegenerative disease mechanisms
Malgrange, Brigitte ULg; Borgs, Laurence ULg; Grobarczyk, Benjamin ULg et al

in Cellular and Molecular Life Sciences : CMLS (2011), 68(4), 635-49

Human pluripotent stem cells, including embryonic (hES) and induced pluripotent stem cells (hiPS), retain the ability to self-renew indefinitely, while maintaining the capacity to differentiate into all ... [more ▼]

Human pluripotent stem cells, including embryonic (hES) and induced pluripotent stem cells (hiPS), retain the ability to self-renew indefinitely, while maintaining the capacity to differentiate into all cell types of the nervous system. While human pluripotent cell-based therapies are unlikely to arise soon, these cells can currently be used as an inexhaustible source of committed neurons to perform high-throughput screening and safety testing of new candidate drugs. Here, we describe critically the available methods and molecular factors that are used to direct the differentiation of hES or hiPS into specific neurons. In addition, we discuss how the availability of patient-specific hiPS offers a unique opportunity to model inheritable neurodegenerative diseases and untangle their pathological mechanisms, or to validate drugs that would prevent the onset or the progression of these neurological disorders. [less ▲]

Detailed reference viewed: 54 (14 ULg)