References of "Goldman, Aaron"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailLong-term trends of tropospheric carbon monoxide and hydrogen cyanide from analysis of high resolution infrared solar spectra
Rinsland, Curtis P.; Goldman, Aaron; Hannigan, James W. et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2007), 104(1), 40-51

Long-term trend and seasonal variation of the mean free tropospheric volume mixing ratios of carbon monoxide (CO) and hydrogen cyanide (HCN) have been derived from analysis of a time series of solar ... [more ▼]

Long-term trend and seasonal variation of the mean free tropospheric volume mixing ratios of carbon monoxide (CO) and hydrogen cyanide (HCN) have been derived from analysis of a time series of solar absorption spectra recorded from the US National Solar Observatory on Kitt Peak (31.9 degrees N, 111.6 degrees W, 2.09 km altitude) spanning almost three decades. The results of a fit to the CO 258 daily averages from May 1977 to April 2005 as a function of time with a model that assumes a sinusoidal seasonal cycle and a linear long-term trend with time yield a mean volume mixing ratio of 102 +/- 3) parts per billion (10(-9) per unit volume) below 10km altitude, I sigma. The CO measurements show a seasonal cycle with a maximum in March and a minimum in September with an amplitude of (22.3 +/- 1.5)% relative to the mean. The best-fit corresponds to a long-term CO trend of (0.15 +/- 0.14)% yr(-1), 1 sigma, relative to the mean. To quantify the possible impact of periods of intense fires, the CO measurements have been compared with the measurements of HCN, a well-documented emission product of biomass burning with a lifetime of similar to 5 months. The best fit to the full HCN time series of 208 daily averages from May 1978 to April 2005 results in a mean volume mixing ratio of (0.219 +/- 0.007) ppbv below 10 km altitude with a similar seasonal cycle, though with a lower relative amplitude than for CO. Although same-day enhancements up to a factor of 1.87 for HCN and 1.24 for CO were measured relative to values predicted by a fit to the time series that accounts for the seasonal cycles and trends of both molecules, excluding time periods of elevated fire emissions has no significant impact on the best-fit long-term free tropospheric CO and HCN trends. Our result of no long-term CO trend since the late 1970s suggests that the global average long-term decline reported from 1990 through 1995 measurements has not continued in the free troposphere. Similarly, a fit to the full time series of 208 HCN free tropospheric daily averages with the same model yields an average 2.09-10km mixing ratio of 0.219ppbv and a long-term trend of (-0.12 +/- 0.14) % yr(-1), 1 sigma, relative to the mean since 1978, also indicating no significant long-term trend above the lower mid-latitude continental US Kitt Peak station. The results for both molecules suggest the site was not significantly impacted by summer boreal fires during the time span of the measurements that in some years cause widespread pollution above northern higher latitude sites. (c) 2006 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 46 (9 ULg)
Full Text
Peer Reviewed
See detailOn the line parameters for the X 1sigma+g (1–0) infrared quadrupolar transitions of 14N2
Goldman, Aaron; Tipping, R.H.; Ma, Q. et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2007), 103

Re-examination of the 14N2 X 1sigma+g (1–0) line parameters in the HITRAN database showed that the vibration–rotation interaction effect on the line intensities has been neglected, and that the halfwidths ... [more ▼]

Re-examination of the 14N2 X 1sigma+g (1–0) line parameters in the HITRAN database showed that the vibration–rotation interaction effect on the line intensities has been neglected, and that the halfwidths are not compatible with experimental and theoretical studies. New line parameters have been generated, which improve the consistency and accuracy in individual N2 line retrievals from atmospheric spectra. Unresolved line shape issues require further studies. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
Peer Reviewed
See detailLong-term trend of CH4 at northern mid-latitudes: Comparison between ground-based infrared solar and surface sampling measurements
Rinsland, Curtis P.; Goldman, Aaron; Elkins, James W. et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2006), 97(3), 457-466

We report average tropospheric CH4 volume mixing ratios retrieved from a 27 year time series of high spectral resolution infrared solar absorption measurements recorded between May 1977 and July 2004 at ... [more ▼]

We report average tropospheric CH4 volume mixing ratios retrieved from a 27 year time series of high spectral resolution infrared solar absorption measurements recorded between May 1977 and July 2004 at the US National Solar Observatory station on Kitt Peak (31.9 degrees N, 111.6 degrees W, 2.09 km altitude) and their comparison with surface in situ sampling measurements recorded between 1983 and 2004 at the Climate Monitoring and Diagnostics Laboratory (CMDL) station at Niwot Ridge, Colorado (40.0 degrees N, 105.5 degrees W, 3013 m altitude). The two measurement sets therefore overlap for the 1983-2004 time period. An average tropospheric volume mixing ratios of 1814 +/- 48 ppbv (1 ppbv = 10(-9) per unit volume) has been derived from the solar absorption time series with a best-fit increase rate trend equal to 8.26 +/- 2.20 ppbv yr(-1) in 1983 decreasing to 1.94 +/- 3.69 ppbv yr(-1) in 2003. The CMDL measurements also show a continuous long-term CH4 volume mixing ratio rise, with subsequent slowing down. A mean ratio of the retrieved average tropospheric volume mixing ratio to the CMDL volume mixing ratio for the overlapping time period of 1.038 +/- 0.034 indicates agreement between both data sets within the quantified experimental errors. (C) 2005 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 29 (3 ULg)
Full Text
Peer Reviewed
See detailLong-term evolution in the tropospheric concentration of chlorofluorocarbon 12 (CCl2F2) derived from high-spectral resolution infrared solar absorption spectra: retrieval and comparison with in situ surface measurements
Rinsland, Curtis P.; Goldman, Aaron; Mahieu, Emmanuel ULg et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2005), 92(2), 201-209

The average tropospheric volume mixing ratios of chlorofluorocarbon 12 (CCl2F2) have been retrieved from high-spectral resolution ground-based infrared solar-absorption spectra recorded from March 1982 to ... [more ▼]

The average tropospheric volume mixing ratios of chlorofluorocarbon 12 (CCl2F2) have been retrieved from high-spectral resolution ground-based infrared solar-absorption spectra recorded from March 1982 to October 2003 with the McMath Fourier transform spectrometer at the US National Solar Observatory facility on Kitt Peak in southern Arizona (31.9degreesN, 111.6degreesW, 2.09 km altitude). The retrievals are based on fits to the unresolved v(8) band Q-branches near 922 cm(-1) using the SFIT2 retrieval algorithm. The annual increase rate was equal to (16.88 +/- 1.37) parts per trillion (10(-12)) by volume at the beginning of the time series, March 1982, or (4.77 +/- 0.04)%, 1 sigma, declining progressively to (2.49 +/- 1.24) parts per trillion, by volume at the end, October 2003, or (0.46 +/- 0.24)%, 1 sigma. Average tropospheric mixing ratios from the solar spectra have been compared with average surface flask and in situ sampling measurements from the Climate Monitoring and Diagnostics Laboratory (CMDL) station at Niwot Ridge, CO, (USA) (40.0degreesN, 105.5degreesW, 3013 m altitude). The average ratio and standard deviation of the monthly means of the retrieved tropospheric mixing ratios relative to the CMDL surface mixing ratios is (1.01 +/- 0.03) for the overlapping time period. Both datasets demonstrate the progressive impact of the Montreal protocol and its strengthening amendments on the trend of CCl2F2, though a tropospheric decrease has yet to be observed. (C) 2004 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 22 (4 ULg)
Full Text
Peer Reviewed
See detailFree tropospheric measurements of formic acid (HCOOH) from infrared ground-based solar absorption spectra: Retrieval approach, evidence for a seasonal cycle, and comparison with model calculations
Rinsland, Curtis P.; Mahieu, Emmanuel ULg; Zander, Rodolphe ULg et al

in Journal of Geophysical Research. Atmospheres (2004), 109(D18),

The seasonal variation of the free tropospheric volume mixing ratio of formic acid (HCOOH) has been derived from high-spectral-resolution solar absorption spectra recorded with the Fourier transform ... [more ▼]

The seasonal variation of the free tropospheric volume mixing ratio of formic acid (HCOOH) has been derived from high-spectral-resolution solar absorption spectra recorded with the Fourier transform spectrometer in the U. S. National Solar Observatory facility on Kitt Peak (31.9degreesN, 111.6degreesE, 2.09 km altitude) at a typical spectral resolution of 0.005 cm(-1). The spectra have been analyzed with the SFIT2 algorithm, which is based on a semiempirical application of the optimal estimation method. Absorption by HCOOH is weak in these solar spectra, but successful retrievals have been obtained with a new procedure that fits the HCOOH nu(6) band Q branch at 1105 cm(-1) simultaneously with a window to account for a temperature-sensitive HDO line, which overlaps the HCOOH Q branch. After retaining only the best measurements from a database extending from June 1980 to October 2002 the retrievals show a seasonal variation, with a summer maximum and a winter minimum. Average 2.09-10 km volume mixing ratios binned in 3 month intervals range from a maximum of 792+/-323 parts per trillion by volume (pptv), or 10(-12), in July-September to a minimum of 313+/-175 pptv in October-December, with the uncertainties corresponding to statistical means from daily averages. The results are compared with previously reported measurements and model calculations. [less ▲]

Detailed reference viewed: 30 (5 ULg)
Full Text
Peer Reviewed
See detailLong-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization
Rinsland, Curtis P.; Mahieu, Emmanuel ULg; Zander, Rodolphe ULg et al

in Journal of Geophysical Research (2003), 108(D8), 4252

Long-term time series of hydrogen chloride (HCl) and chlorine nitrate (ClONO2) total column abundances has been retrieved from high spectral resolution ground-based solar absorption spectra recorded with ... [more ▼]

Long-term time series of hydrogen chloride (HCl) and chlorine nitrate (ClONO2) total column abundances has been retrieved from high spectral resolution ground-based solar absorption spectra recorded with infrared Fourier transform spectrometers at nine NDSC (Network for the Detection of Stratospheric Change) sites in both Northern and Southern Hemispheres. The data sets span up to 24 years and most extend until the end of 2001. The time series of Cly (defined here as the sum of the HCl and ClONO2 columns) from the three locations with the longest time-span records show rapid increases until the early 1990s superimposed on marked day-to-day, seasonal and inter-annual variability. Subsequently, the buildup in Cly slows and reaches a broad plateau after 1996, also characterized by variability. A similar time evolution is also found in the total chlorine concentration at 55 km altitude derived from Halogen Occultation Experiment (HALOE) global observations since 1991. The stabilization of inorganic chlorine observed in both the total columns and at 55 km altitude indicates that the near-global 1993 organic chlorine (CCly) peak at the Earth’s surface has now propagated over a broad altitude range in the upper atmosphere, though the time lag is difficult to quantify precisely from the current data sets, due to variability. We compare the three longest measured time series with two-dimensional model calculations extending from 1977 to 2010, based on a halocarbon scenario that assumes past measured trends and a realistic extrapolation into the future. The model predicts broad Cly maxima consistent with the long-term observations, followed by a slow Cly decline reaching 12–14% relative to the peak by 2010. The data reported here confirm the effectiveness of the Montreal Protocol and its Amendments and Adjustments in progressively phasing out the major man-related perturbations of the stratospheric ozone layer, in particular, the anthropogenic chlorine-bearing source gases. [less ▲]

Detailed reference viewed: 27 (11 ULg)
Full Text
Peer Reviewed
See detailSF6 ground-based infrared solar absorption measurements: long-term trend, pollution events, and a search for SF5CF3 absorption
Rinsland, Curtis P.; Goldman, Aaron; Stephen, T. M. et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2003), 78(1), 41-53

Infrared solar spectra recorded with the Fourier transform spectrometer in the McMath solar telescope complex on Kitt Peak (31.9degreesN latitude, 111.6degreesW, 2.09 km altitude), southwest of Tucson ... [more ▼]

Infrared solar spectra recorded with the Fourier transform spectrometer in the McMath solar telescope complex on Kitt Peak (31.9degreesN latitude, 111.6degreesW, 2.09 km altitude), southwest of Tucson, Arizona, have been analyzed to retrieve average SF6 tropospheric mixing ratios over a two-decade time span. The analysis is based primarily on spectral fits to absorption by the intense, unresolved nu(3) band Q branch at 947.9 cm(-1). A best fit to measurements recorded with SF6 near typical background concentrations yields a SF6 increase in the average tropospheric mixing ratio from 1.13 pptv (10(-12) per unit volume) in March 1982 to 3.77 pptv in March 2002. The long-term increase by a factor of 3.34 over the time span is consistent with the rapid growth of surface mixing ratios measured in situ at Northern Hemisphere remote stations, though the infrared measurements show a large scatter. Average tropospheric mixing ratio enhancements above background by 2-3 orders of magnitude have been identified in spectra recorded on 5 days between November 1988 and April 1997. These spectra were individually analyzed in an attempt to detect the strongest 8-12 mum band of SF5CF3, a molecule recently identified with an atmospheric growth that has closely paralleled the rise in SF6 during the past three decades. Absorption by the strongest SF5CF3 band was predicted to be above the noise level in the Kitt Peak spectrum with the highest average mean tropospheric SF6 mixing ratio, assuming the reported atmospheric SF5CF3/SF6 ratio and a room temperature absorption cross sections reported for the SF5CF3 903-cm(-1) band. An upper limit of 8 x 10(15) molecules cm(-2) for the SF5CF3 total column was estimated for this case. We hypothesize that the highly elevated SF6 levels above Kitt Peak resulted from a local release experiment rather than production via electrochemical fluoridation of intermediate products, the proposed source of atmospheric SF5CF3. The absence of the SF5CF3 feature in the spectra with elevated SF6 is consistent with the absence of SF5CF3 reported in a pure SF6 sample. Published by Elsevier Science Ltd. [less ▲]

Detailed reference viewed: 41 (3 ULg)
Full Text
Peer Reviewed
See detailGround-based infrared spectroscopic measurements of carbonyl sulfide: Free tropospheric trends from a 24-year time series of solar absorption measurements
Rinsland, Curtis P.; Goldman, Aaron; Mahieu, Emmanuel ULg et al

in Journal of Geophysical Research. Atmospheres (2002), 107(D22),

[1] Solar absorption spectra recorded over a 24-year time span have been analyzed to retrieve average free tropospheric mixing ratios of carbonyl sulfide (OCS). The measurements were recorded with the ... [more ▼]

[1] Solar absorption spectra recorded over a 24-year time span have been analyzed to retrieve average free tropospheric mixing ratios of carbonyl sulfide (OCS). The measurements were recorded with the Fourier transform spectrometer located in the U. S. National Solar Observatory McMath solar telescope facility on Kitt Peak (altitude 2.09 km, lat. 31.9degreesN, long. 111.6degreesW), southwest of Tucson, Arizona, and were obtained on 167 days between May 1978 and February 2002, typically at 0.01-cm(-1) spectral resolution. A best fit to the time series shows an average mixing ratio of 566 pptv (1 pptv = 10(-12) per unit volume) between 2.09 and 10 km, a small but statistically significant long-term decrease equal to (-0.25 +/- 0.04)% yr(-1), 1 sigma, and a seasonal variation with a summer maximum, a winter minimum, and a peak amplitude of (1.3 +/- 0.4)%, 1 sigma, relative to the mean. Although a statistically significant decline and seasonal variation have been detected, both are exceedingly small. The present results confirm and extend earlier studies showing that the OCS free tropospheric abundance at northern midlatitudes has remained nearly constant over the last decades. [less ▲]

Detailed reference viewed: 22 (7 ULg)
Full Text
Peer Reviewed
See detailMultiyear infrared solar spectroscopic measurements of HCN, CO, C2H6,and C2H2 tropospheric columns above Lauder, New Zealand (45 degrees S latitude)
Rinsland, Curtis P.; Jones, Nicholas B.; Connor, Brian J. et al

in Journal of Geophysical Research. Atmospheres (2002), 107(D14),

[1] Near-simultaneous, 0.0035 or 0.007 cm(-1) resolution infrared solar absorption spectra of tropospheric HCN, C2H2, CO, and C2H6 have been recorded from the Network for the Detection of Stratospheric ... [more ▼]

[1] Near-simultaneous, 0.0035 or 0.007 cm(-1) resolution infrared solar absorption spectra of tropospheric HCN, C2H2, CO, and C2H6 have been recorded from the Network for the Detection of Stratospheric Change station in Lauder, New Zealand (45.04degreesS, 169.68degreesE, 0.37 km altitude). All four molecules were measured on over 350 days with HCN and C2H2 reported for the first time based on a new analysis procedure that significantly increases the effective signal-to-noise of weak tropospheric absorption features in the measured spectra. The CO measurements extend by 2.5 years a database of measurements begun in January 1994 for CO with improved sensitivity in the lower and middle troposphere. The C2H6 measurements lengthen a time series begun in July 1993 with peak sensitivity in the upper troposphere. Retrievals of all four molecules were obtained with an algorithm based on the semiempirical application of the Rodgers optimal estimation technique. Columns are reported for the 0.37- to 12-km-altitude region, approximately the troposphere above the station. The seasonal cycles of all four molecules are asymmetric, with minima in March-June and sharp peaks and increased variability during August-November, which corresponds to the period of maximum biomass burning near the end of the Southern Hemisphere tropical dry season. Except for a possible HCN column decrease, no evidence was found for a statistically significant long-term trend. [less ▲]

Detailed reference viewed: 36 (16 ULg)
Full Text
Peer Reviewed
See detailEnhanced tropospheric HCN columns above Kitt Peak during the 1982-1983 and 1997-1998 El Nino warm phases
Rinsland, Curtis P.; Goldman, Aaron; Zander, Rodolphe ULg et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2001), 69(1), 3-8

Free tropospheric HCN columns have been derived from infrared solar spectra recorded with the National Solar Observatory Fourier transform spectrometer on Kitt Peak, Arizona (31.9ºN latitude, 111.6ºW ... [more ▼]

Free tropospheric HCN columns have been derived from infrared solar spectra recorded with the National Solar Observatory Fourier transform spectrometer on Kitt Peak, Arizona (31.9ºN latitude, 111.6ºW longitude, 2.09 km altitude) between May 1978 and May 2000. The time series show up to a factor of 2.4 enhancement during the strong El Ninos of 1982-1983 and 1997-1998, the most intense since 1970. The observations provide confirmation that HCN is a sensitive tracer of biomass burning emissions transported to the free troposphere. No statistically significant long-term trend in the HCN-free tropospheric column has been detected over the 22-year measurement period. The results illustrate the importance of long-term spectroscopic measurements for quantifying climate and atmospheric chemistry-related atmospheric changes. [less ▲]

Detailed reference viewed: 16 (7 ULg)
Full Text
Peer Reviewed
See detailProfiles of stratospheric chlorine nitrate (ClONO2) from atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra
Rinsland, Curtis P.; Gunson, M. R.; Abrams, M. C. et al

in Journal of Geophysical Research (1994), 99(D9), 18895-18900

Stratospheric volume mixing ratio profiles of chlorine nitrate (ClONO2) have been retrieved from 0.01-cm−1 resolution infrared solar occultation spectra recorded at latitudes between 14°N and 54°S by the ... [more ▼]

Stratospheric volume mixing ratio profiles of chlorine nitrate (ClONO2) have been retrieved from 0.01-cm−1 resolution infrared solar occultation spectra recorded at latitudes between 14°N and 54°S by the atmospheric trace molecule spectroscopy Fourier transform spectrometer during the ATLAS 1 shuttle mission (March 24 to April 2, 1992). The results were obtained from nonlinear least squares fittings of the ClONO2 v 4 band Q branch at 780.21 cm−1 with improved spectroscopic parameters generated on the basis of recent laboratory work. The individual profiles, which have an accuracy of about ±20%, are compared with previous observations and model calculations. [less ▲]

Detailed reference viewed: 8 (3 ULg)
Full Text
Peer Reviewed
See detailHeterogeneous conversion of N2O5 to HNO3 in the post-Mount Pinatubo eruption stratosphere
Rinsland, Curtis P.; Gunson, Michaël R.; Abrams, M. C. et al

in Journal of Geophysical Research (1994), 99(D4), 8213-8219

Simultaneous stratospheric volume mixing ratio (VMR) profiles of dinitrogen pentoxide (N2O5) and nitric acid (HNO3) at sunrise between 25-degrees-N and 15-degrees-S latitude and profiles of HNO3 at sunset ... [more ▼]

Simultaneous stratospheric volume mixing ratio (VMR) profiles of dinitrogen pentoxide (N2O5) and nitric acid (HNO3) at sunrise between 25-degrees-N and 15-degrees-S latitude and profiles of HNO3 at sunset between 42-degrees-S and 53-degrees-S latitude have been derived from 0.01 cm-1 resolution infrared solar occultation spectra recorded 9 1/2 months after the massive eruption of the Mount Pinatubo volcano in the Philippine Islands. The measurements were obtained by the atmospheric trace molecule spectroscopy (ATMOS) Fourier transform spectrometer during the ATLAS 1 shuttle mission (March 24 to April 2, 1992). The measured HNO3 VMRs are higher at all altitudes and latitudes than corresponding values measured by the limb infrared monitor of the stratosphere (LIMS) instrument during the same season in 1979, when the aerosol loading was near background levels. The largest relative increase in the HNO3 VMR occurred near the equator at 30-km altitude, where the ATMOS/ATLAS 1 values are about a factor of 2 higher than the LIMS measurements. Two-dimensional model calculations show that the increase in HNO3 and the ATMOS/ATLAS 1 measurement of a steep decrease in the N2O5 VMR below 30 km can be explained by the enhanced conversion of N2O5 to HNO3 on the surfaces of the Mount Pinatubo sulfate aerosols. Our profile results demonstrate the global impact of the N2O5 + H2O --> 2HNO3 heterogeneous reaction in altering the partitioning of stratospheric odd nitrogen after a major volcanic eruption. [less ▲]

Detailed reference viewed: 65 (12 ULg)