References of "Goffin, Eric"
     in
Bookmark and Share    
Full Text
See detailDesign and synthesis of PET-probes targeting AMPA-subtype receptors
Deverdenne, François ULg; Claes, Giselle ULg; Goffin, Eric ULg et al

Poster (2015, June 05)

The AMPA subtype of glutamatergic receptors is the main actor in the excitatory neurotransmission in the mammalian central nervous system. These receptors are involved in the expression and the ... [more ▼]

The AMPA subtype of glutamatergic receptors is the main actor in the excitatory neurotransmission in the mammalian central nervous system. These receptors are involved in the expression and the maintenance of the long-term potentiation, a phenomenon closely linked to cognitive and memorization processes. Based on experimental data collected in recent years, the use of AMPA potentiators seems to be an interesting approach in the treatment of cognitive deficits (e.g. Alzheimer disease), schizophrenia or depression. Such AMPA signal potentiation could be mediated by positive allosteric modulators (PAMs) of the AMPA receptors, a class of compounds able to produce a fine signal tuning in the presence of the endogenous ligand in the synapse, providing less toxicity than direct agonists. With this approach, the laboratory of Medicinal Chemistry of Liège university developed many series of AMPA potentiators , among which 1,2,4-benzothiadiazine 1,1-dioxides (BTDs). In order to better understand the in vivo mapping of AMPA receptors and its evolution in neurological diseases, the present work aims at developing the design and the synthesis of BTDs positive allosteric modulators radiolabeled with a fluorine-18 atom. Based on previously synthesized series in this field, we investigate the synthesis of a new class of high-affinity AMPA potentiators characterized by the presence of a fluorine atom at selected positions on the structure of the AMPA potentiators. Thanks to in vitro pharmacological evaluations, we will further determine the best candidates for their fluorine-18 radiolabeling. [less ▲]

Detailed reference viewed: 24 (1 ULg)
Full Text
See detailDesign, synthesis and pharmacological evaluation of dimeric ligands for the benzothiadiazine dioxide allosteric binding site of the AMPA receptors
Drapier, Thomas ULg; Francotte, Pierre ULg; Pirotte, Bernard ULg et al

Conference (2015, June 04)

L-glutamic acid is the major excitatory neurotransmitter in the brain. It exerts its effects through metabotropic and ionotropic receptors. Among the latter, three subtypes have been identified: NMDA ... [more ▼]

L-glutamic acid is the major excitatory neurotransmitter in the brain. It exerts its effects through metabotropic and ionotropic receptors. Among the latter, three subtypes have been identified: NMDA, AMPA and KA receptors. It is now well established that a deficit in glutamatergic signaling may be responsible for neurological disorders such as schizophrenia, depression, mild cognitive impairment and ADHD. Enhancement of the signal through positive allosteric modulators of AMPA receptors might be a therapeutic issue for these diseases. These compounds are expected to exert a fine tuning of the signal. Since they require the presence of the endogenous ligand to be active, they are expected to induce less toxicity than agonists. In this context, based on the structure of known allosteric modulators of AMPA receptors such as cyclothiazide (1) and IDRA 21 (2), the Laboratory of Medicinal Chemistry (University of Liège) has developed a series of 1,2,4-benzothiadiazine 1,1-dioxides with high potency as AMPA receptor potentiators, among which compounds (3) and (4). Crystallographic data obtained by the Department of Medicinal Chemistry (University of Copenhagen) highlighted that (3) and (4) bind to two contiguous sites at the dimer interface of the ligand binding domain of the AMPA receptor1,2. From these data, we may expect that the synthesis of dimeric molecules could lead to further improvement in affinity and activity. Our work consists in the development of a family of dimeric benzothiadiazine dioxides and their evaluation in a pharmacological assay. Several structural parameters such as the position of the bridge on the aromatic ring between the two heterocycles as well as its nature and length will be studied in order to determine their impact on the activity and thus the affinity. [less ▲]

Detailed reference viewed: 26 (6 ULg)
Full Text
See detailDesign and synthesis of PET-probes targeting AMPA subtype receptors
Deverdenne, François ULg; Claes, Giselle ULg; Goffin, Eric ULg et al

Poster (2015, May 13)

The AMPA subtype of glutamatergic receptors is the main actor in the fast excitatory neurotransmission in the mammalian central nervous system. These receptors are involved in the expression and the ... [more ▼]

The AMPA subtype of glutamatergic receptors is the main actor in the fast excitatory neurotransmission in the mammalian central nervous system. These receptors are involved in the expression and the maintenance of the long-term potentiation, a phenomenon closely linked to cognitive and memorization processes. Based on experimental data, it also appears that glutamatergic systems are involved in several pathological diseases. For instance, a lack of glutamatergic neurotransmission is observed in cognitive disorders or schizophrenia and an excessive activity is observed in Parkinson or Huntington diseases. The in vivo study of glutamate receptors mapping and its evolution appears to be an essential step for a better understanding of its implications. However, according to the literature, design of such a probe remains difficult due to the lack of specificity of the probes. Taking into account the potential in vitro and in vivo activity and specificity of benzothiadizine dioxides (BTDs) acting as AMPA positive allosteric modulators, we are investing the development of new compounds of this class radiolabeled with a fluorine-18 atom. Hence, we are currently developing new series of BTDs characterized by the presence of a fluorine atom and a 7-phenoxy-substituent that are expected to be more active and more specific. Finally, pharmacological tests to evaluate the best candidates for the radiochemical synthesis and in vivo evaluations are currently in progress. [less ▲]

Detailed reference viewed: 11 (6 ULg)
Full Text
Peer Reviewed
See detailThermodynamic Characterization of New Positive Allosteric Modulators Binding to the Glutamate Receptor A2 Ligand-Binding Domain: Combining Experimental and Computational Methods Unravels Differences in Driving Forces
Nørholm, Ann-Beth; Francotte, Pierre ULg; Goffin, Eric ULg et al

in Journal of Chemical Information & Modeling (2014), 54(12), 3404-3416

Positive allosteric modulation of the ionotropic glutamate receptor GluA2 presents a potential treatment of cognitive disorders, for example, Alzheimer’s disease. In the present study, we describe the ... [more ▼]

Positive allosteric modulation of the ionotropic glutamate receptor GluA2 presents a potential treatment of cognitive disorders, for example, Alzheimer’s disease. In the present study, we describe the synthesis, pharmacology, and thermodynamic studies of a series of monofluoro-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. Measurements of ligand binding by isothermal titration calorimetry (ITC) showed similar binding affinities for the modulator series at the GluA2 LBD but differences in the thermodynamic driving forces. Binding of 5c (7-F) and 6 (no-F) is enthalpy driven, and 5a (5-F) and 5b (6-F) are entropy driven. For 5d (8-F), both quantities were equal in size. Thermodynamic integration (TI) and one-step perturbation (OSP) were used to calculate the relative binding affinity of the modulators. The OSP calculations had a higher predictive power than those from TI, and combined with the shorter total simulation time, we found the OSP method to be more effective for this setup. Furthermore, from the molecular dynamics simulations, we extracted the enthalpies and entropies, and along with the ITC data, this suggested that the differences in binding free energies are largely explained by the direct ligand-surrounding enthalpies. Furthermore, we used the OSP setup to predict binding affinities for a series of polysubstituted fluorine compounds and monosubstituted methyl compounds and used these predictions to characterize the modulator binding pocket for this scaffold of positive allosteric modulators.10.1021/ci500559b [less ▲]

Detailed reference viewed: 23 (4 ULg)
Full Text
Peer Reviewed
See detailPositive Allosteric Modulators of 2-Amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic Acid Receptors Belonging to 4-Cyclopropyl-3,4-dihydro-2H-1,2,4-pyridothiadiazine Dioxides and Diversely Chloro-Substituted 4-Cyclopropyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxides
Francotte, Pierre ULg; Nørholm, Ann-Beth; Deva, Taru et al

in Journal of Medicinal Chemistry (2014), 57(22), 9539-9553

Two 4-ethyl-substituted pyridothiadiazine dioxides belonging to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor positive allosteric modulators were cocrystallized with the GluA2 ... [more ▼]

Two 4-ethyl-substituted pyridothiadiazine dioxides belonging to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor positive allosteric modulators were cocrystallized with the GluA2 ligand binding domain in order to decipher the impact of the position of the nitrogen atom on their binding mode at the AMPA receptors. The latter was found to be very similar to that of previously described benzothiadiazine-type AMPA receptor modulators. The affinity of the two compounds for the receptor was determined by isothermal titration calorimetry. Accordingly, the synthesis and biological evaluation of novel 4-cyclopropyl-substituted pyridothiadiazine dioxides was performed and completed with the synthesis of the corresponding chloro-substituted 4-cyclopropyl-3,4-dihydro-2H-benzothiadiazine 1,1-dioxides. The “8-aza” compound 32 was found to be the most potent pyridothiadiazine-type AMPA receptor potentiator in vitro, whereas the 7-chloro-substituted compound 36c emerged as the most promising benzothiadiazine dioxide. Due to proper drug-likeness and low in vivo acute toxicity in mice, 36c was chosen for a more complete preclinical evaluation. The compound was able to easily cross the blood–brain barrier. In an in vivo object recognition test with CD1 mice, oral administration of 36c was found to significantly improve cognition performance at doses as low as 1 mg/kg. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailSynthesis, Pharmacological and Structural Characterization, and Thermodynamic Aspects of GluA2-Positive Allosteric Modulators with a 3,4-Dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxide Scaffold
Nørholm, Ann-Beth; Francotte, Pierre ULg; Olsen, Lars et al

in Journal of Medicinal Chemistry (2014), 56(21), 8736-8745

Positive allosteric modulators of ionotropic glutamate receptors are potential compounds for treatment of cognitive disorders, e.g., Alzheimer’s disease. The modulators bind within the dimer interface of ... [more ▼]

Positive allosteric modulators of ionotropic glutamate receptors are potential compounds for treatment of cognitive disorders, e.g., Alzheimer’s disease. The modulators bind within the dimer interface of the ligand-binding domain (LBD) and stabilize the agonist-bound conformation, thereby slowing receptor desensitization and/or deactivation. Here we describe the synthesis and pharmacological testing at GluA2 of a new generation of 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. The most potent modulator 3 in complex with GluA2-LBD-L483Y-N754S was subjected to structural analysis by X-ray crystallography, and the thermodynamics of binding was studied by isothermal titration calorimetry. Compound 3 binds to GluA2-LBD-L483Y-N754S with a Kd of 0.35 μM (ΔH = −7.5 kcal/mol and −TΔS = −1.3 kcal/mol). This is the first time that submicromolar binding affinity has been achieved for this type of positive allosteric modulator. The major structural factor increasing the binding affinity of 3 seems to be interactions between the cyclopropyl group of 3 and the backbone of Phe495 and Met496. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
See detailDesign and synthesis of high-affinity ligands of AMPA receptors and study of their Fluorine-18 radiolabeling
Deverdenne, François ULg; Goffin, Eric ULg; Plenevaux, Alain ULg et al

Poster (2014, June 05)

The AMPA subtype of glutamatergic receptors is the main actor in the excitatory neurotransmission in the mammalian central nervous system. These receptors are involved in the expression and the ... [more ▼]

The AMPA subtype of glutamatergic receptors is the main actor in the excitatory neurotransmission in the mammalian central nervous system. These receptors are involved in the expression and the maintenance of the long-term potentiation, a phenomenon closely linked to cognitive and memorization processes. Based on experimental data collected in recent years, the use of AMPA potentiators seems to be an interesting approach in the treatment of cognitive deficits (e.g. Alzheimer disease), schizophrenia or depression. Such AMPA signal potentiation could be mediated by positive allosteric modulators (PAMs) of the AMPA receptors, a class of compounds able to produce a fine signal tuning in the presence of the endogenous ligand in the synapse, providing less toxicity than direct agonists. With this approach, the laboratory of Medicinal Chemistry of Liège university developed many series of AMPA potentiators , among which 1,2,4-benzothiadiazine 1,1-dioxides (BTDs). In order to better understand the in vivo mapping of AMPA receptors and its evolution in neurological diseases, the present work aims at developing the design and the synthesis of BTDs positive allosteric modulators radiolabeled with a fluorine-18 atom. Based on previously synthesized series in this field, we investigate the synthesis of a new class of high-affinity AMPA potentiators characterized by the presence of a fluorine atom at selected positions on the structure of the AMPA potentiators. Thanks to in vitro pharmacological evaluations, we will further determine the best candidates for their fluorine-18 radiolabeling. [less ▲]

Detailed reference viewed: 51 (7 ULg)
Full Text
Peer Reviewed
See detailValidation analytique d'une méthode chromatographique destinée à rechercher et à identifier les opiacés naturels ou (semi) synthétiques
DUBOIS, Nathalie ULg; Counerotte, Stéphane ULg; Goffin, Eric ULg et al

in Annales de Biologie Clinique (2014), 72(2), 197-206

L’identification de la substance absorbée par un consommateur d’opiacés peut être problématique dans la mesure où il n’existe pas de biomarqueur spécifique pour toutes les molécules. Nous avons développé ... [more ▼]

L’identification de la substance absorbée par un consommateur d’opiacés peut être problématique dans la mesure où il n’existe pas de biomarqueur spécifique pour toutes les molécules. Nous avons développé une technique de chromatographie liquide ultra-haute pression couplée à un spectromètre de masse en tandem qui permet l’identification et le dosage de 25 opiacés dans le plasma. La préparation de l’échantillon consiste en une extraction en phase solide sur colonnes Oasis ® MCX (Waters). La méthode a été validée selon les critères préconisés par la FDA, complètement pour 21 substances et avec quelques réserves pour les 4 produits restants. Cette méthode a été appliquée à 80 patients traités au CHU de Liège pour lesquels la recherche d’opiacés était positive. L’identification du produit consommé a été effective dans 86 % des cas. [less ▲]

Detailed reference viewed: 44 (11 ULg)
Full Text
Peer Reviewed
See detailSynthesis, Pharmacological and Structural Characterization, and Thermodynamic Aspects of GluA2-Positive Allosteric Modulators with a 3,4-Dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxide Scaffold
Nørholm, Ann-Beth; Francotte, Pierre ULg; Olsen, Lars et al

in Journal of Medicinal Chemistry (2013), 56(21), 87368745

Positive allosteric modulators of ionotropic glutamate receptors are potential compounds for treatment of cognitive disorders, e.g., Alzheimer’s disease. The modulators bind within the dimer interface of ... [more ▼]

Positive allosteric modulators of ionotropic glutamate receptors are potential compounds for treatment of cognitive disorders, e.g., Alzheimer’s disease. The modulators bind within the dimer interface of the ligand-binding domain (LBD) and stabilize the agonist-bound conformation, thereby slowing receptor desensitization and/or deactivation. Here we describe the synthesis and pharmacological testing at GluA2 of a new generation of 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. The most potent modulator 3 in complex with GluA2-LBD-L483Y-N754S was subjected to structural analysis by X-ray crystallography, and the thermodynamics of binding was studied by isothermal titration calorimetry. Compound 3 binds to GluA2-LBD-L483Y-N754S with a Kd of 0.35 μM (ΔH = −7.5 kcal/mol and −TΔS = −1.3 kcal/mol). This is the first time that submicromolar binding affinity has been achieved for this type of positive allosteric modulator. The major structural factor increasing the binding affinity of 3 seems to be interactions between the cyclopropyl group of 3 and the backbone of Phe495 and Met496. [less ▲]

Detailed reference viewed: 32 (7 ULg)
Full Text
Peer Reviewed
See detailDevelopment of Thiophenic Analogues of Benzothiadiazine Dioxides as New Powerful Potentiators of 2-Amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic Acid (AMPA) Receptors
Francotte, Pierre ULg; Goffin, Eric ULg; Fraikin, Pierre et al

in Journal of Medicinal Chemistry (2013), 56(20), 7838-7850

On the basis of the results obtained in previous series of AMPA potentiators belonging to 3,4-dihydro-2H-benzo- and 3,4-dihydro-2H-pyrido-1,2,4-thiadiazine 1,1-dioxides, the present work focuses on the ... [more ▼]

On the basis of the results obtained in previous series of AMPA potentiators belonging to 3,4-dihydro-2H-benzo- and 3,4-dihydro-2H-pyrido-1,2,4-thiadiazine 1,1-dioxides, the present work focuses on the design of original isosteric 3,4-dihydro-2H-thieno-1,2,4-thiadiazine 1,1-dioxides. Owing to the sulfur position, three series of compounds were developed and their activity as AMPA potentiators was characterized. In each of the developed series, potent compounds were discovered. After screening the selected active compounds on a safety in vivo test, 6-chloro-4-ethyl-3,4-dihydro-2H-thieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide (24) appeared as the most promising compound and was further evaluated. Its effects on long-term potentiation in vivo and on AMPA-mediated noradrenaline release were measured to predict its potential cognitive enhancing properties. Finally, an object recognition test performed in mice revealed that 24 was able to significantly enhance cognition, after oral administration, at doses as low as 0.3 mg/kg. This study validates the interest of the isosteric replacement of the benzene or pyridine nuclei by the thiophene nucleus in the ring-fused thiadiazine dioxides class of AMPA potentiators. [less ▲]

Detailed reference viewed: 29 (7 ULg)
Full Text
Peer Reviewed
See detailTriphenylphosphonium salts of 1,2,4-benzothiadiazine 1,1-dioxides related to diazoxide targeting mitochondrial ATP-sensitive potassium channels
Constant-Urban, C.; Charif, M.; Goffin, Eric ULg et al

in Bioorganic & Medicinal Chemistry Letters (2013), 23

Detailed reference viewed: 30 (14 ULg)
Full Text
Peer Reviewed
See detailAMPA receptor positive allosteric modulators: a patent review
Pirotte, Bernard ULg; Francotte, Pierre ULg; Goffin, Eric ULg et al

in Expert Opinion on Therapeutic Patents (2013), 23

Detailed reference viewed: 22 (3 ULg)
Full Text
Peer Reviewed
See detailN-Aryl-N'-(chroman-4-yl)ureas and thioureas display in vitro anticancer activity and selectivity on apoptosis-resistant glioblastoma cells: screening, synthesis of simplified derivatives, and structure-activity relationship analysis.
Goffin, Eric ULg; Lamoral-Theys, Delphine; Tajeddine, Nicolas et al

in European Journal of Medicinal Chemistry (2012), 54

A series of chroman derivatives previously reported as potassium channel openers, as well as some newly synthesized simplified structures, were examined for their in vitro effects on the growth of three ... [more ▼]

A series of chroman derivatives previously reported as potassium channel openers, as well as some newly synthesized simplified structures, were examined for their in vitro effects on the growth of three human high-grade glioma cell lines: U373, T98G, and Hs683. Significant in vitro growth inhibitory activity was observed with 2,2-dimethylchroman-type nitro-substituted phenylthioureas, such as compounds 4o and 4p. Interestingly, most tested phenylureas were found to be slightly less active, but more cell selective (normal versus tumor glial cells, such as 3d, 3e, and 3g), thus less toxic, than the corresponding phenylthioureas. No significant differences were observed in terms of chroman-derivative-induced growth inhibitory effects between glioma cells sensitive to pro-apoptotic stimuli (Hs683 glioma cells) and glioma cells associated with various levels of resistance to pro-apoptotic stimuli (U373 and T98G glioma cells), a feature that suggests non-apoptotic-mediated growth inhibition. Flow cytometry analyses confirmed the absence of pro-apoptotic effects for phenylthioureas and phenylureas when analyzed in U373 glioma cells and demonstrated U373 cell cycle arrest in the G0/G1 phase. Computer-assisted phase-contrast videomicroscopy revealed that 3d and 3g displayed cytostatic effects, while 3e displayed cytotoxic ones. As a result, this work identified phenylurea-type 2,2-dimethylchromans as a new class of antitumor agents to be further explored for an innovative therapeutic approach for high-grade glioma and/or for a possible new mechanism of action. [less ▲]

Detailed reference viewed: 43 (3 ULg)
Full Text
Peer Reviewed
See detailNew Fluorinated 1,2,4-Benzothiadiazine 1,1-Dioxides: Discovery of an Orally Active Cognitive Enhancer Acting through Potentiation of the 2-Amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic Acid Receptors
Francotte, Pierre ULg; Goffin, Eric ULg; Fraikin, Pierre ULg et al

in Journal of Medicinal Chemistry (2010), 53

In the search of a potent cognitive enhancer, a series of 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides have been synthesized and evaluated as positive allosteric modulators of the AMPA receptors. In ... [more ▼]

In the search of a potent cognitive enhancer, a series of 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides have been synthesized and evaluated as positive allosteric modulators of the AMPA receptors. In the present work, we focused our efforts on the insertion of mono- or polyfluoro- substituted alkyl chains at the 4-position of the thiadiazine ring in an attempt to enhance the pharmacokinetic behavior of previously described compounds. Among all the described compounds, 7-chloro-4-(2-fluoroethyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide, 12b, was shown to exert a strong activity on AMPA receptors in vitro and a marked cognitive-enhancing effect in vivo after oral administration to Wistar rats. Considering its in vivo activity, the metabolic degradation of 12b was studied and compared to that of its nonfluorinated analogue 9b. Taken together, results of this study clearly validated the positive impact of the fluorine atom on the alkyl chain at the 4-position of benzothiadiazine dioxides on activity and metabolic stability. [less ▲]

Detailed reference viewed: 80 (20 ULg)