References of "Gobec, Stanislav"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailExploration of the chemical space of novel naphthalene-sulfonamide and anthranilic acid-based inhibitors of penicillin-binding Proteins
Sosic, Izidor; Turk, Samo; Sinreih, Masa et al

in Acta Chimica Slovenica (2012), 59(2), 380-388

Penicillin-binding proteins are a well established, validated and still a very promising target for the design and development of new antibacterial agents. Based on our previous discovery of several ... [more ▼]

Penicillin-binding proteins are a well established, validated and still a very promising target for the design and development of new antibacterial agents. Based on our previous discovery of several noncovalent small-molecule inhibitor hits for resistant PBPs we decided to additionally explore the chemical space around these compounds. In order to clarify their structure-activity relationships for PBP inhibition two new series of compounds were synthesized, characterized and evaluated biochemically: the derivatives of anthranilic acid and naphthalene-sulfonamide derivatives. The target compounds were tested for their inhibitory activities on three different transpeptidases: PBP2a from methicillin-resistant Staphylococcus aureus (MRSA) strains, PBP5fm from Enterococcus faecium strains, and PBP1b from Streptococcus pneumoniae strains. The most promising results for both of these series of compounds were obtained against the PBP2a enzyme with the IC50 values in the micromolar range. Although these results do not represent a significant breakthrough in the field of noncovalent PBP inhibitors, they do provide useful structure-activity relationship data, and thus a more solid basis for the design of potent and noncovalent inhibitors of resistant PBPs. [less ▲]

Detailed reference viewed: 65 (5 ULg)
Full Text
Peer Reviewed
See detailStructure Guided Development of Potent Reversibly Binding Penicillin Binding Protein Inhibitors
Woon, Esther C. Y.; Zervosen, Astrid ULg; Sauvage, Eric ULg et al

in ACS Medicinal Chemistry letters (2011), 2 (3)

Following from the evaluation of different types of electrophiles, combined modeling and crystallographic analyses are used to generate potent boronic acid based inhibitors of a penicillin binding protein ... [more ▼]

Following from the evaluation of different types of electrophiles, combined modeling and crystallographic analyses are used to generate potent boronic acid based inhibitors of a penicillin binding protein. The results suggest that a structurally informed approach to penicillin binding protein inhibition will be useful for the development of both improved reversibly binding inhibitors, including boronic acids, and acylating inhibitors, such as β-lactams. [less ▲]

Detailed reference viewed: 34 (8 ULg)
Full Text
Peer Reviewed
See detailSmall molecule inhibitors of peptidoglycan synthesis targeting the lipid II precursor.
Derouaux, Adeline ULg; Turk, Samo; Olrichs, Nick K et al

in Biochemical Pharmacology (2011), 81(9), 1098-105

Bacterial peptidoglycan glycosyltransferases (GTs) of family 51 catalyze the polymerization of the lipid II precursor into linear peptidoglycan strands. This activity is essential to bacteria and ... [more ▼]

Bacterial peptidoglycan glycosyltransferases (GTs) of family 51 catalyze the polymerization of the lipid II precursor into linear peptidoglycan strands. This activity is essential to bacteria and represents a validated target for the development of new antibacterials. Application of structure-based virtual screening to the National Cancer Institute library using eHits program and the structure of the glycosyltransferase domain of the Staphylococcus aureus penicillin-binding protein 2 resulted in the identification of two small molecules analogues 5, a 2-[1-[(2-chlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine and 5b, a 2-[1-[(3,4-dichlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine that exhibit antibacterial activity against several Gram-positive bacteria but were less active on Gram-negative bacteria. The two compounds inhibit the activity of five GTs in the micromolar range. Investigation of the mechanism of action shows that the compounds specifically target peptidoglycan synthesis. Unexpectedly, despite the fact that the compounds were predicted to bind to the GT active site, compound 5b was found to interact with the lipid II substrate via the pyrophosphate motif. In addition, this compound showed a negatively charged phospholipid-dependent membrane depolarization and disruption activity. These small molecules are promising leads for the development of more active and specific compounds to target the essential GT step in cell wall synthesis. [less ▲]

Detailed reference viewed: 64 (15 ULg)
Full Text
Peer Reviewed
See detailNew noncovalent inhibitors of penicillin-binding proteins from penicillin-resistant bacteria.
Turk, Samo; Verlaine, Olivier ULg; Gerards, Thomas ULg et al

in PloS one (2011), 6(5), 19418

BACKGROUND: Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs beta-lactams inhibit transpeptidase ... [more ▼]

BACKGROUND: Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs beta-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for beta-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs. METHODOLOGY/PRINCIPAL FINDINGS: Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains. CONCLUSIONS: We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria. [less ▲]

Detailed reference viewed: 34 (13 ULg)
See detailIdentification and characterization of novel peptidoglycan glycosyltransferase inhibitors with antibacterial activity
Derouaux, Adeline ULg; Turk, Samo; Offant, Julien et al

Poster (2009, November)

Detailed reference viewed: 24 (3 ULg)