References of "Gladstone, G"
     in
Bookmark and Share    
See detailA Comparison of FUV Auroral Emissions During the April 2002 Events as seen by the IMAGE/FUV and TIMED/GUVI Instruments
Gladstone, G.; Retherford, K.; Solomon, S. et al

Conference (2002, December 01)

The auroral emissions that resulted from the series of solar particle events and magnetic storms during 14-24 April 2002 provide an excellent data set for the cross-comparison of the IMAGE/FUV and TIMED ... [more ▼]

The auroral emissions that resulted from the series of solar particle events and magnetic storms during 14-24 April 2002 provide an excellent data set for the cross-comparison of the IMAGE/FUV and TIMED/GUVI auroral imagers. The IMAGE/FUV instrument comprises the SI spectral imager (121.8 nm and 135.6 nm) and the WIC imaging photometer (LBH) and observes the entire Earth from high Earth orbit. The TIMED/GUVI spectral imager (121.6 nm, 130.4 nm, 135.6 nm, LBH short, and LBH long) scans a nadir-to-limb swath from low Earth orbit. Although there is a large difference in spatial resolution, preliminary comparison of simultaneously-observed diffuse auroral emissions indicates fairly good agreement between the calibrated brightnesses determined for common spectral features. We will present a detailed simulation of one or more of the April 2002 events as seen by each imager to determine if a single description of the auroral precipitation can self-consistently account for the proton- and electron-generated FUV emissions observed from the two spacecraft. [less ▲]

Detailed reference viewed: 16 (1 ULg)
See detailX-Ray Emissions from Jupiter
Gladstone, G.; Waite, J.; Grodent, Denis ULg et al

Conference (2001, May 29)

X-ray emissions from Jupiter have been observed for over 20~years. Jovian x-ray emissions are associated with the high-latitude aurora and with solar fluorescence and/or an energetic particle source at ... [more ▼]

X-ray emissions from Jupiter have been observed for over 20~years. Jovian x-ray emissions are associated with the high-latitude aurora and with solar fluorescence and/or an energetic particle source at low-latitudes as identified by past Einstein and ROSAT observations. Enhanced auroral x-rays were also observed to be associated with the impact of Comet Shoemaker-Levy~9. The high-latitude x-ray emissions are best explained by energetic sulfur and oxygen ion precipitation from the Jovian magnetosphere, a suggestion that has been confirmed by recent Chandra ACIS observations. Exciting new information about Jovian x-ray emissions has been made possible with Chandra's High Resolution Camera. We report here for the first time the detection of a forty minute oscillation associated with the Jovian x-ray aurora. With the help of ultraviolet auroral observations from Hubble Space Telescope, we pinpoint the auroral mapping of the x-rays and provide new information on the x-ray source mechanism. [less ▲]

Detailed reference viewed: 4 (0 ULg)