References of "Ghaye, Aurélie"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRUNX3, EGR1 AND SOX9B FORM A REGULATORY CASCADE REQUIRED TO MODULATE BMP-SIGNALING DURING CRANIAL CARTILAGE DEVELOPMENT IN ZEBRAFISH.
Dalcq, Julia ULg; Pasque, Vincent; Ghaye, Aurélie ULg et al

in PLoS ONE (2012), in press

The cartilaginous elements forming the pharyngeal arches of the zebrafish derive from cranial neural crest cells. Their proper differentiation and patterning are regulated by reciprocal interactions ... [more ▼]

The cartilaginous elements forming the pharyngeal arches of the zebrafish derive from cranial neural crest cells. Their proper differentiation and patterning are regulated by reciprocal interactions between neural crest cells and surrounding endodermal, ectodermal and mesodermal tissues. In this study, we show that the endodermal factors Runx3 and Sox9b form a regulatory cascade with Egr1 resulting in transcriptional repression of the fsta gene, encoding a BMP antagonist, in pharyngeal endoderm. Using a transgenic line expressing a dominant negative BMP receptor or a specific BMP inhibitor (dorsomorphin), we show that BMP signaling is indeed required around 30 hpf in the neural crest cells to allow cell differentiation and proper pharyngeal cartilage formation. Runx3, Egr1, Sox9b and BMP signaling are required for expression of runx2b, one of the key regulator of cranial cartilage maturation and bone formation. Finally, we show that egr1 depletion leads to increased expression of fsta and inhibition of BMP signaling in the pharyngeal region. In conclusion, we show that the successive induction of the transcription factors Runx3, Egr1 and Sox9b constitutes a regulatory cascade that controls expression of Follistatin A in pharyngeal endoderm, the latter modulating BMP signaling in developing cranial cartilage in zebrafish. [less ▲]

Detailed reference viewed: 46 (31 ULg)
Full Text
Peer Reviewed
See detailZebrafish sox9b is crucial for hepatopancreatic duct development and pancreatic endocrine cell regeneration
Manfroid, Isabelle ULg; Ghaye, Aurélie ULg; Naye, François et al

in Developmental Biology (2012)

Recent zebrafish studies have shown that the late appearing pancreatic endocrine cells derive from pancreatic ducts but the regulatory factors involved are still largely unknown. Here, we show that the ... [more ▼]

Recent zebrafish studies have shown that the late appearing pancreatic endocrine cells derive from pancreatic ducts but the regulatory factors involved are still largely unknown. Here, we show that the zebrafish sox9b gene is expressed in pancreatic ducts where it labels the pancreatic Notchresponsive cells previously shown to be progenitors. Inactivation of sox9b disturbs duct formation and impairs regeneration of beta cells from these ducts in larvae. sox9b expression in the midtrunk endoderm appears at the junction of the hepatic and ventral pancreatic buds and, by the end of embryogenesis, labels the hepatopancreatic ductal system as well as the intrapancreatic and intrahepatic ducts. Ductal morphogenesis and differentiation are specifically disrupted in sox9b mutants, with the dysmorphic hepatopancreatic ducts containing misdifferentiated hepatocyte-like and pancreatic-like cells. We also show that maintenance of sox9b expression in the extrapancreatic and intrapancreatic ducts requires FGF and Notch activity, respectively, both pathways known to prevent excessive endocrine differentiation in these ducts. Furthermore, beta cell recovery after specific ablation is severely compromised in sox9b mutant larvae. Our data position sox9b as a key player in the generation of secondary endocrine cells deriving from pancreatic ducts in zebrafish. [less ▲]

Detailed reference viewed: 52 (18 ULg)