References of "Georges, Emeline"
     in
Bookmark and Share    
Full Text
See detailAggregation of flexible domestic heat pumps for the provision of reserve in power systems
Georges, Emeline ULg; Quoilin, Sylvain ULg; Mathieu, Sébastien ULg et al

in Proceedings of the 30th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems. (2017, July)

The integration of renewable energy sources in the electricity production mix has an important impact on the management of the electricity grid, due to their intermittency. In particular, there is a ... [more ▼]

The integration of renewable energy sources in the electricity production mix has an important impact on the management of the electricity grid, due to their intermittency. In particular, there is a rising need for flexibility, both on the supply and demand sides. This paper assesses the amount of flexibility that could be reserved from a set of flexible residential heat pumps in a given geographical area. It addresses the problem of a load aggregator controlling a set of heat pumps used to provide both space-heating and domestic hot water. The flexibility of the heat pumps is unlocked in order to reduce electricity procurement costs in the day-ahead electricity market, while ensuring the provision of a predefined amount of reserve for real-time grid management. The objective of the paper is two-fold. On the one hand, an aggregation method of large sets of heat pumps based on physics-based models and random sampling techniques is proposed. On the other hand, a combined optimization problem is formulated to determine both the optimal electricity demand profile to be bought on the day-ahead market and the cost associated to the reservation of a defined amount of power. The method is applied to a set of 40000 residential heat pumps in Belgian houses. Results show that these houses can provide up to 100MW of upward reserve for 50% of the current costs. The provision of downward reserve at competitive cost is hampered by significant overconsumption. [less ▲]

Detailed reference viewed: 22 (2 ULg)
Full Text
See detailModulation strategies of integrated HVAC systems used in residential buildings for demand-side management at different scales
Georges, Emeline ULg

Doctoral thesis (2017)

The integration of renewable energy sources in the electricity production mix has an important impact on the management of the electricity grid, due to their intermittency. In particular, to ensure grid ... [more ▼]

The integration of renewable energy sources in the electricity production mix has an important impact on the management of the electricity grid, due to their intermittency. In particular, to ensure grid balancing, there is a rising need for flexibility, both on the supply and demand sides. A possible solution to help achieve grid balancing is the smart modulation of the electrical load in a "demand following supply" scheme through demand-side management. In this context, the objective of this doctoral thesis is to assess the amount of flexibility that can be harvested from the management of residential thermostatically-controlled loads and, in particular, through the use of heat pumps and storage. To that end, a modeling and control framework is developed to define efficient and scalable optimal load modulation strategies. The flexibility potential is investigated in different contexts: day-ahead electricity market, matching of decentralized electricity production and provision of ancillary services. Different scales are considered, from a single building to several thousand buildings. [less ▲]

Detailed reference viewed: 27 (5 ULg)
Full Text
Peer Reviewed
See detailResidential heat pump as flexible load for direct control service with parametrized duration and rebound effect
Georges, Emeline ULg; Cornélusse, Bertrand ULg; Ernst, Damien ULg et al

in Applied Energy (2017), 187

This paper addresses the problem of an aggregator controlling residential heat pumps to offer a direct control flexibility service. The service consists of a power modulation, upward or downward, that is ... [more ▼]

This paper addresses the problem of an aggregator controlling residential heat pumps to offer a direct control flexibility service. The service consists of a power modulation, upward or downward, that is activated at a given time period over a fixed number of periods. The service modulation is relative to an optimized baseline that minimizes the energy costs. The load modulation is directly followed by a constrained rebound effect, consisting of a delay time with no deviations from the baseline consumption and a payback time to return to the baseline state. The potential amount of modulation and the constrained rebound effect are computed by solving mixed integer linear problems. Within these problems, the thermal behavior of the building is modeled by an equivalent thermal network made of resistances and lumped capacitances. Simulations are performed for different sets of buildings typical of the Belgian residential building stock and are presented in terms of achievable modulation amplitude, deviations from the baseline and associated costs. A cluster of one hundred ideal buildings, corresponding to retrofitted freestanding houses, is then chosen to investigate the influence of each parameter defined within the service. Results show that with a set of one hundred heat pumps, a load aggregator could expect to harvest mean modulation amplitudes of up to 138 kW for an upward modulation and up to 51 kW for a downward modulation. The obtained values strongly depend on the proposed flexibility service. For example, they can decrease down to 2.6 kW and 0.4 kW, respectively, if no rebound effect is allowed. [less ▲]

Detailed reference viewed: 732 (70 ULg)
Full Text
Peer Reviewed
See detailA general methodology for optimal load management with distributed renewable energy generation and storage in residential housing
Georges, Emeline ULg; Braun, James; Lemort, Vincent ULg

in Journal of Building Performance Simulation [=JBPS] (2016)

In the US, buildings represent around 40% of the primary energy consumption and 74% of the electrical energy consumption [U.S. Department of Energy (DOE). 2012. 2011 Buildings Energy Data Book. Energy ... [more ▼]

In the US, buildings represent around 40% of the primary energy consumption and 74% of the electrical energy consumption [U.S. Department of Energy (DOE). 2012. 2011 Buildings Energy Data Book. Energy Efficiency & Renewable Energy]. Incentives to promote the installation of on-site renewable energy sources have emerged in different states, including net metering programmes. The fast spread of such distributed power generation represents additional challenges for the management of the electricity grid and has led to increased interest in smart control of building loads and demand response programmes. This paper presents a general methodology for assessing opportunities associated with optimal load management in response to evolving utility incentives for residential buildings that employ renewable energy sources and energy storage. An optimal control problem is formulated for manipulating thermostatically controlled domestic loads and energy storage in response to the availability of renewable energy generation and utility net metering incentives. The methodology is demonstrated for a typical American house built in the 1990s and equipped with a single-speed air-to-air heat pump, an electric water heater and photovoltaic (PV) collectors. The additional potential associated with utilizing electrical batteries is also considered. Load matching performance for on-site renewable energy generation is characterized in terms of percentage of the electricity production consumed on-site and the proportion of the demand covered. For the purpose of assessing potential, simulations were performed assuming perfect predictions of the electrical load profiles. The method also allows determination of the optimal size of PV systems for a given net metering programme. Results of the case study showed significant benefits associated with control optimization including an increase of load matching between 3% and 28%, with the improvement dependent on the net metering tariff and available storage capacity. The estimated cost savings for the consumer ranged from 6.4% to 27.5% compared to no optimization with a unitary buy-back ratio, depending on the available storage capacity. Related reduction in CO2 emissions were between 11% and 46%. Optimal load management of the home thermal systems allowed an increase in the optimal size of the PV system in the range of 13–21%. [less ▲]

Detailed reference viewed: 90 (29 ULg)
Full Text
See detailLoad modulation strategies of residential heat pumps for demand-response programs with different thermal storage options
Georges, Emeline ULg; Lemort, Vincent ULg

in Proceedings of the 4th International High Performance Buildings Conference at Purdue (2016, July)

Detailed reference viewed: 30 (5 ULg)
Full Text
Peer Reviewed
See detailDirect control service from residential heat pump aggregation with specified payback
Georges, Emeline ULg; Cornélusse, Bertrand ULg; Ernst, Damien ULg et al

in Proceedings of the 19th Power Systems Computation Conference (PSCC) (2016, June)

This paper addresses the problem of an aggregator controlling residential heat pumps to offer a direct control flexibility service. The service is defined by a 15 minute power modulation, upward or ... [more ▼]

This paper addresses the problem of an aggregator controlling residential heat pumps to offer a direct control flexibility service. The service is defined by a 15 minute power modulation, upward or downward, followed by a payback of one hour and 15 minutes. The service modulation is relative to an optimized baseline that minimizes the energy costs. The potential amount of modulable power and the payback effect are computed by solving mixed integer linear problems. Within these problems, the building thermal behavior is modeled by an equivalent thermal network made of resistances and lumped capacitances whose parameters are identified from validated models. Simulations are performed on 100 freestanding houses. For an average 4.3 kW heat pump, results show a potential of 1.2 kW upward modulation with a payback of 600 Wh and 150 Wh of overconsumption. A downward modulation of 500 W per house can be achieved with a payback of 420 Wh and 120 Wh of overconsumption. [less ▲]

Detailed reference viewed: 213 (34 ULg)
Full Text
See detailAnalysis of the flexibility of Belgian residential buildings equipped with Heat Pumps and Thermal Energy Storages
Georges, Emeline ULg; Garsoux, Pierre; Masy, Gabrielle et al

in Proceedings of CLIMA2016 Conference (2016, May)

Detailed reference viewed: 52 (6 ULg)
Full Text
See detailResidential heat pumps as flexible loads for direct control service with constrained payback
Georges, Emeline ULg; Cornélusse, Bertrand ULg; Ernst, Damien ULg et al

Conference (2016, January 26)

This paper addresses the problem of an aggregator controlling residential heat pumps to offer a direct control flexibility service. The service is defined by a 15 minute power modulation, upward or downward ... [more ▼]

This paper addresses the problem of an aggregator controlling residential heat pumps to offer a direct control flexibility service. The service is defined by a 15 minute power modulation, upward or downward, followed by a payback of one hour and 15 minutes. The service modulation is relative to an optimized baseline that minimizes the energy costs. The potential amount of modulable power and the payback effect are computed by solving mixed integer linear problems. Within these problems, the building thermal behavior is modeled by an equivalent thermal network made of resistances and lumped capacitances whose parameters are identified from validated models. Simulations are performed on 100 freestanding houses. For an average 4.3 kW heat pump, results show a potential of 1.2 kW upward modulation with a payback of 600 Wh and 150 Wh of overconsumption. A downward modulation of 500 W per house can be achieved with a payback of 420 Wh and 120 Wh of overconsumption. [less ▲]

Detailed reference viewed: 26 (4 ULg)
Full Text
Peer Reviewed
See detailEconomic assessment of electric energy storage for load shifting in positive energy building
Dumont, Olivier ULg; Carmo, Carolina; Georges, Emeline ULg et al

in International Journal of Energy and Environmental Engineering (2016)

Detailed reference viewed: 51 (9 ULg)
Full Text
Peer Reviewed
See detailHot water tanks : how to select the optimal modelling approach?
Dumont, Olivier ULg; Carmo, Carolina; Dickes, Rémi ULg et al

Conference (2016)

Detailed reference viewed: 44 (7 ULg)
Peer Reviewed
See detailEconomic assessment of energy storage for load shifting in Positive Energy Building
Dumont, Olivier ULg; Carmo, carolina; Georges, Emeline ULg et al

Conference (2016)

Detailed reference viewed: 83 (9 ULg)
Full Text
Peer Reviewed
See detailSmart Grid Energy Flexible Buildings through the use of Heat Pumps and Building Thermal Mass as Energy Storage in the Belgian context
Masy, Gabrielle; Georges, Emeline ULg; Verhelst, Clara et al

in Science and Technology for the Built Environment (2015), 21(6), 800-811

Detailed reference viewed: 127 (25 ULg)
Full Text
Peer Reviewed
See detailA generalized moving-boundary algorithm to predict the heat transfer rate of counterflow heat exchangers for any phase configuration
Bell, Ian; Quoilin, Sylvain ULg; Georges, Emeline ULg et al

in Applied Thermal Engineering (2015), 79

In this work, a novel and robust solution approach is presented that can be used to predict the steady-state thermal heat transfer rate for counterflow heat exchangers with any combination of single-phase ... [more ▼]

In this work, a novel and robust solution approach is presented that can be used to predict the steady-state thermal heat transfer rate for counterflow heat exchangers with any combination of single-phase and two-phase conditions within the heat exchanger. This methodology allows for multiple internal pinching points, as well as all permutations of subcooled liquid, two-phase and superheated vapor sections for the hot and cold fluids. A residual function based on the matching of the required and available thermal conductances in each section is derived, and Brent's method is then used to drive the residual to zero. Examples are presented for the application of this methodology to a water-heated n-Propane evaporator. The computational time required to execute the model for a simple case is on the order of one millisecond when the tabular interpolation methods of CoolProp are applied. Source code for the algorithm is provided in the Python programming language as an appendix. [less ▲]

Detailed reference viewed: 104 (8 ULg)
Full Text
Peer Reviewed
See detailLessons Learned from Heat Balance Analysis for Holzkirchen Twin Houses Experiment
Masy, Gabrielle; Rehab, Imane ULg; Andre, Philippe ULg et al

in Energy Procedia (2015)

Holzkirchen full scale dynamic experiments were conducted in the framework of IEA Annex 58 research program with the aim to obtain and apply a high quality experimental dataset for model validation of ... [more ▼]

Holzkirchen full scale dynamic experiments were conducted in the framework of IEA Annex 58 research program with the aim to obtain and apply a high quality experimental dataset for model validation of full scale buildings. A first experiment was conducted in August 2013. Two identical houses were submitted to a side by side experiment, one with blinds up, one with blinds down. That first experience lasted 42 days including an initialization period, a Randomly Ordered Logarithmic Binary Sequence of heat inputs (ROLBS), and a re-initialization followed by a free-float period. A second experiment was conducted in April 2014 in one of the two houses, with higher levels of heating power in the South oriented zones and imposed indoor temperatures in the North oriented zones. Simulations were performed with EES Engineering Equation Solver using simplified RC dynamic models. The discrepancies observed between simulated results and measured data were first explained through a deeper analysis of thermal bridges, a better assessment of solar heat gains and a better assessment of the air duct heat losses. In the second experiment, the results revealed an underestimation of the building transmission heat losses. A candidate explanation might be the air stratification which would enhance heat losses on the ceiling side. A modelization of the upper and lower room air layers was introduced. The resulting simulated indoor temperature profiles were in accordance with the measurements. A complete breakdown of heat losses and heat gains was computed for both houses, using measured temperatures as input data for the simulation. [less ▲]

Detailed reference viewed: 74 (24 ULg)
Full Text
Peer Reviewed
See detailImpact of net metering programs on optimal load management in US residential housing – a case study
Georges, Emeline ULg; Braun, J. E.; Groll, E. et al

in Proceedings of 9th International Conference on System Simulation in Buildings (2014, December 11)

Detailed reference viewed: 72 (19 ULg)
Full Text
Peer Reviewed
See detailMethodology to characterize a residential building stock using a bottom-up approach: a case study applied to Belgium
Gendebien, Samuel ULg; Georges, Emeline ULg; Bertagnolio, Stéphane et al

in International Journal of Sustainable Energy Planning and Management (2014)

Detailed reference viewed: 79 (30 ULg)
Full Text
See detailSmart Grid Energy Flexible Buildings through the use of Heat Pumps in the Belgian context
Georges, Emeline ULg; Masy, Gabrielle; Verhelst, Clara et al

in 3rd International High Performance Buildings Conference at Purdue (2014, July)

Detailed reference viewed: 127 (24 ULg)