References of "Gemine, Quentin"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA Gaussian mixture approach to model stochastic processes in power systems
Gemine, Quentin ULg; Cornélusse, Bertrand ULg; Glavic, Mevludin ULg et al

in Proceedings of the 19th Power Systems Computation Conference (PSCC'16) (2016, June)

Probabilistic methods are emerging for operating electrical networks, driven by the integration of renewable generation. We present an algorithm that models a stochastic process as a Markov process using ... [more ▼]

Probabilistic methods are emerging for operating electrical networks, driven by the integration of renewable generation. We present an algorithm that models a stochastic process as a Markov process using a multivariate Gaussian Mixture Model, as well as a model selection technique to search for the adequate Markov order and number of components. The main motivation is to sample future trajectories of these processes from their last available observations (i.e. measurements). An accurate model that can generate these synthetic trajectories is critical for applications such as security analysis or decision making based on lookahead models. The proposed approach is evaluated in a lookahead security analysis framework, i.e. by estimating the probability of future system states to respect operational constraints. The evaluation is performed using a 33-bus distribution test system, for power consumption and wind speed processes. Empirical results show that the GMM approach slightly outperforms an ARMA approach. [less ▲]

Detailed reference viewed: 88 (24 ULg)
Full Text
Peer Reviewed
See detailTowards the Minimization of the Levelized Energy Costs of Microgrids using both Long-term and Short-term Storage Devices
François-Lavet, Vincent ULg; Gemine, Quentin ULg; Ernst, Damien ULg et al

in Smart Grid: Networking, Data Management, and Business Models (2016)

This chapter falls within the context of the optimization of the levelized energy cost (LEC) of microgrids featuring photovoltaic panels (PV) associated with both long-term (hydrogen) and short-term ... [more ▼]

This chapter falls within the context of the optimization of the levelized energy cost (LEC) of microgrids featuring photovoltaic panels (PV) associated with both long-term (hydrogen) and short-term (batteries) storage devices. First, we propose a novel formalization of the problem of building and operating microgrids interacting with their surrounding environment. Then we show how to optimally operate a microgrid using linear programming techniques in the context where the consumption and the production are known. It appears that this optimization technique can also be used to address the problem of optimal sizing of the microgrid, for which we propose a robust approach. These contributions are illustrated in two different settings corresponding to Belgian and Spanish data. [less ▲]

Detailed reference viewed: 87 (27 ULg)
Full Text
See detailActive network management for electrical distribution systems: problem formulation and benchmark
Gemine, Quentin ULg

Scientific conference (2014, November 28)

In order to operate an electrical distribution network in a secure and cost-efficient way, it is necessary, due to the rise of renewable energy-based distributed generation, to develop Active Network ... [more ▼]

In order to operate an electrical distribution network in a secure and cost-efficient way, it is necessary, due to the rise of renewable energy-based distributed generation, to develop Active Network Management (ANM) strategies. These strategies rely on short-term policies that control the power injected by generators and/or taken of by loads in order to avoid congestion or voltage problems. While simple ANM strategies would curtail the production of generators, more advanced ones would move the consumption of loads to relevant time periods to maximize the potential of renewable energy sources. However, such advanced strategies imply solving large-scale optimal sequential decision-making problems under uncertainty, something that is understandably complicated. In order to promote the development of computational techniques for active network management, we detail a generic procedure for formulating ANM decision problems as Markov decision processes. We also specify it to a 75-bus distribution network. The resulting test instance is available at http://www.montefiore.ulg.ac.be/~anm/ . It can be used as a test bed for comparing existing computational techniques, as well as for developing new ones. A solution technique that consists in an approximate multistage program is also illustrated on the test instance. [less ▲]

Detailed reference viewed: 51 (18 ULg)
Full Text
Peer Reviewed
See detailRelaxations for multi-period optimal power flow problems with discrete decision variables
Gemine, Quentin ULg; Ernst, Damien ULg; Louveaux, Quentin ULg et al

in Proceedings of the 18th Power Systems Computation Conference (PSCC'14) (2014, August)

We consider a class of optimal power flow (OPF) applications where some loads offer a modulation service in exchange for an activation fee. These applications can be modeled as multi-period formulations ... [more ▼]

We consider a class of optimal power flow (OPF) applications where some loads offer a modulation service in exchange for an activation fee. These applications can be modeled as multi-period formulations of the OPF with discrete variables that define mixed-integer non-convex mathematical programs. We propose two types of relaxations to tackle these problems. One is based on a Lagrangian relaxation and the other is based on a network flow relaxation. Both relaxations are tested on several benchmarks and, although they provide a comparable dual bound, it appears that the constraints in the solutions derived from the network flow relaxation are significantly less violated. [less ▲]

Detailed reference viewed: 195 (39 ULg)
Full Text
Peer Reviewed
See detailGestion active d’un réseau de distribution d’électricité : formulation du problème et benchmark
Gemine, Quentin ULg; Ernst, Damien ULg; Cornélusse, Bertrand ULg

in Proceedings des 9èmes Journées Francophones de Planification, Décision et Apprentissage (2014, May)

Afin d’opérer un réseau de distribution d’électricité de manière fiable et efficace, c’est-à-dire de respecter les contraintes physiques tout en évitant des coûts de renforcement prohibitifs, il devient ... [more ▼]

Afin d’opérer un réseau de distribution d’électricité de manière fiable et efficace, c’est-à-dire de respecter les contraintes physiques tout en évitant des coûts de renforcement prohibitifs, il devient nécessaire de recourir à des stratégies de gestion active du réseau. Ces stratégies, rendues nécessaires notamment par l’essor de la production distribuée, reposent sur des politiques de contrôle à court-terme du niveau de puissance des dispositifs producteurs ou consommateurs d’électricité. Alors qu’une solution simple consisterait à moduler à la baisse la production des générateurs, il paraît néan- moins plus intéressant de déplacer la consommation aux moments adéquats afin d’exploiter au mieux les sources d’énergie renouvelables sur lesquelles reposent généralement ces générateurs. Un tel moyen de contrôle introduit néanmoins un couplage temporel au problème, menant à un problème d’optimisation non-linéaire, séquentiel sous incertitude et à variables mixtes. Afin de favoriser la recherche dans ce domaine très complexe, nous proposons une formalisation générique du problème de ges- tion active d’un réseau de distribution moyenne tension (MT). Plus spécifiquement, cette formalisa- tion se présente sous la forme d’un processus de décision markovien. Dans cette article, nous pré- sentons également une spécification de ce modèle décisionnel à un réseau de 75 noeuds et pour un ensemble de services de modulation donnés. L’instance de test qui en résulte est disponible à l’adresse http://www.montefiore.ulg.ac.be/~anm/ et a pour objectif de mesurer et de comparer les performances des techniques de résolution qui seront développées. [less ▲]

Detailed reference viewed: 255 (49 ULg)
Full Text
See detailActive network management for electrical distribution systems: problem formulation, benchmark, and approximate solution
Gemine, Quentin ULg; Ernst, Damien ULg; Cornélusse, Bertrand ULg

E-print/Working paper (2014)

With the increasing share of renewable and distributed generation in electrical distribution systems, Active Network Management (ANM) becomes a valuable option for a distribution system operator to ... [more ▼]

With the increasing share of renewable and distributed generation in electrical distribution systems, Active Network Management (ANM) becomes a valuable option for a distribution system operator to operate his system in a secure and cost-effective way without relying solely on network reinforcement. ANM strategies are short-term policies that control the power injected by generators and/or taken off by loads in order to avoid congestion or voltage issues. While simple ANM strategies consist in curtailing temporary excess generation, more advanced strategies rather attempt to move the consumption of loads to anticipated periods of high renewable generation. However, such advanced strategies imply that the system operator has to solve large-scale optimal sequential decision-making problems under uncertainty. The problems are sequential for several reasons. For example, decisions taken at a given moment constrain the future decisions that can be taken, and decisions should be communicated to the actors of the system sufficiently in advance to grant them enough time for implementation. Uncertainty must be explicitly accounted for because neither demand nor generation can be accurately forecasted. We first formalize the ANM problem, which in addition to be sequential and uncertain, has a non-linear nature stemming from the power flow equations and a discrete nature arising from the activation of power modulation signals. This ANM problem is then cast as a stochastic mixed integer non-linear program, for which we provide quantitative results using state of the art open source solvers and perform a sensitivity analysis over the amount of flexibility available in the system and the number of scenarios considered in the deterministic equivalent of the stochastic program. To foster further research on this problem, we make available a test bed based on a 75-bus distribution network at http://www.montefiore.ulg.ac.be/~anm/ . This test bed contains a simulator of the distribution system, with stochastic models for the generation and consumption devices, and callbacks to implement and test various ANM strategies [less ▲]

Detailed reference viewed: 186 (28 ULg)
Full Text
Peer Reviewed
See detailActive network management: planning under uncertainty for exploiting load modulation
Gemine, Quentin ULg; Karangelos, Efthymios ULg; Ernst, Damien ULg et al

in Proceedings of the 2013 IREP Symposium - Bulk Power Systems Dynamics and Control - IX (2013)

This paper addresses the problem faced by a distribution system operator (DSO) when planning the operation of a network in the short-term. The problem is formulated in the context of high penetration of ... [more ▼]

This paper addresses the problem faced by a distribution system operator (DSO) when planning the operation of a network in the short-term. The problem is formulated in the context of high penetration of renewable energy sources (RES) and distributed generation (DG), and when flexible demand is available. The problem is expressed as a sequential decision-making problem under uncertainty, where, in the first stage, the DSO has to decide whether or not to reserve the availability of flexible demand, and, in the subsequent stages, can curtail the generation and modulate the available flexible loads. We analyze the relevance of this formulation on a small test system, discuss the assumptions made, compare our approach to related work, and indicate further research directions. [less ▲]

Detailed reference viewed: 177 (52 ULg)
Full Text
See detailImitative learning for designing intelligent agents for video games
Gemine, Quentin ULg

Master's dissertation (2012)

Over the past decades, video games have become increasingly popular and complex. Virtual worlds have gone a long way since the first arcades and so have the artificial intelligence (AI) techniques used to ... [more ▼]

Over the past decades, video games have become increasingly popular and complex. Virtual worlds have gone a long way since the first arcades and so have the artificial intelligence (AI) techniques used to control agents in these growing environments. Tasks such as world exploration, constrained pathfinding or team tactics and coordination just to name a few are now default requirements for contemporary video games. However, despite its recent advances, video game AI still lacks the ability to learn. In this work, we attempt to break the barrier between video game AI and machine learning and propose a generic method allowing real-time strategy (RTS) agents to learn production strategies from a set of recorded games using supervised learning. We test this imitative learning approach on the popular RTS title StarCraft II and successfully teach a Terran agent facing a Protoss opponent new production strategies. [less ▲]

Detailed reference viewed: 115 (18 ULg)
Full Text
Peer Reviewed
See detailImitative Learning for Real-Time Strategy Games
Gemine, Quentin ULg; Safadi, Firas ULg; Fonteneau, Raphaël ULg et al

in Proceedings of the 2012 IEEE Conference on Computational Intelligence and Games (2012)

Over the past decades, video games have become increasingly popular and complex. Virtual worlds have gone a long way since the first arcades and so have the artificial intelligence (AI) techniques used to ... [more ▼]

Over the past decades, video games have become increasingly popular and complex. Virtual worlds have gone a long way since the first arcades and so have the artificial intelligence (AI) techniques used to control agents in these growing environments. Tasks such as world exploration, con- strained pathfinding or team tactics and coordination just to name a few are now default requirements for contemporary video games. However, despite its recent advances, video game AI still lacks the ability to learn. In this paper, we attempt to break the barrier between video game AI and machine learning and propose a generic method allowing real-time strategy (RTS) agents to learn production strategies from a set of recorded games using supervised learning. We test this imitative learning approach on the popular RTS title StarCraft II® and successfully teach a Terran agent facing a Protoss opponent new production strategies. [less ▲]

Detailed reference viewed: 144 (49 ULg)