References of "Garcia, Paulo"
     in
Bookmark and Share    
Full Text
See detailPhase closure image reconstruction for future VLTI instrumentation
Filho, Mercedes E; Renard, Stephanie; Garcia, Paulo et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

Classically, optical and near-infrared interferometry have relied on closure phase techniques to produce images. Such techniques allow us to achieve modest dynamic ranges. In order to test the feasibility ... [more ▼]

Classically, optical and near-infrared interferometry have relied on closure phase techniques to produce images. Such techniques allow us to achieve modest dynamic ranges. In order to test the feasibility of next generation optical interferometers in the context of the VLTI-spectro-imager (VSI), we have embarked on a study of image reconstruction and analysis. Our main aim was to test the influence of the number of telescopes, observing nights and distribution of the visibility points on the quality of the reconstructed images. Our results show that observations using six Auxiliary Telescopes (ATs) during one complete night yield the best results in general and is critical in most science cases; the number of telescopes is the determining factor in the image reconstruction outcome. In terms of imaging capabilities, an optical, six telescope VLTI-type configuration and ~200 meter baseline will achieve 4 mas spatial resolution, which is comparable to ALMA and almost 50 times better than JWST will achieve at 2.2 microns. Our results show that such an instrument will be capable of imaging, with unprecedented detail, a plethora of sources, ranging from complex stellar surfaces to microlensing events. [less ▲]

Detailed reference viewed: 62 (4 ULg)
Full Text
See detailPhase referencing in optical interferometry
Filho, Mercedes E; Garcia, Paulo; Duvert, Gilles et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and ... [more ▼]

One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce images. Such techniques allow only to achieve modest dynamic ranges. However, with high contrast objects, for faint targets or when structure detail is needed, phase referencing techniques as used in radio interferometry, should theoretically achieve higher dynamic ranges for the same number of telescopes. Our approach is not to provide evidence either for or against the hypothesis that phase referenced imaging gives better dynamic range than closure phase imaging. Instead we wish to explore the potential of this technique for future optical interferometry and also because image reconstruction in the optical using phase referencing techniques has only been performed with limited success. We have generated simulated, noisy, complex visibility data, analogous to the signal produced in radio interferometers, using the VLTI as a template. We proceeded with image reconstruction using the radio image reconstruction algorithms contained in aips imagr (clean algorithm). Our results show that image reconstruction is successful in most of our science cases, yielding images with a 4 milliarcsecond resolution in K band. We have also investigated the number of target candidates for optical phase referencing. Using the 2MASS point source catalog, we show that there are several hundred objects with phase reference sources less than 30 arcseconds away, allowing to apply this technique. [less ▲]

Detailed reference viewed: 55 (7 ULg)