References of "Gérard, Jean-Claude"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSimilarity of the Jovian satellite footprints: spots multiplicity and dynamics
Bonfond, Bertrand ULg; Grodent, Denis ULg; Badman, S. V. et al

in Icarus (2017), 292(2017), 208217

In the magnetospheres of Jupiter and Saturn, the intense interaction of the satellites Io, Europa, Ganymede and Enceladus with their surrounding plasma environment leaves a signature in the aurora of the ... [more ▼]

In the magnetospheres of Jupiter and Saturn, the intense interaction of the satellites Io, Europa, Ganymede and Enceladus with their surrounding plasma environment leaves a signature in the aurora of the planet. Called satellite footprints, these auroral features appear either as a single spot (Europa and Enceladus) or as multiple spots (Io and Ganymede). Moreover, they can be followed by extended trailing tails in the case of Io and Europa, while no tail has been reported for Ganymede and Enceladus, yet. Here we show that all Jovian footprints can be made of several spots. Furthermore, the footprints all experience brightness variations on timescale of 2-3 minutes. We also demonstrate that the satellite location relative to the plasma sheet is not the only driver for the footprint brightness, but that the plasma environment and the magnetic field strength also play a role. These new findings demonstrate that the Europa and Ganymede footprints are very similar to the Io footprint. As a consequence, the processes expected to take place at Io, such as the bi-directional electron acceleration by Alfvén waves or the partial reflection of these waves on plasma density gradients, can most likely be extended to the other footprints, suggesting that they are indeed universal processes. [less ▲]

Detailed reference viewed: 65 (14 ULg)
Full Text
See detailNorth and South: Simultaneous observations of both Jovian poles from Juno and the Hubble Space Telescope
Bonfond, Bertrand ULg; Gladstone, George R.; Grodent, Denis ULg et al

Poster (2017, June 15)

On its elongated orbit, Juno flies over the poles of Jupiter every 53.5 days. The few hours before and after the perijove offer unique opportunities to observe the whole polar region from close distance ... [more ▼]

On its elongated orbit, Juno flies over the poles of Jupiter every 53.5 days. The few hours before and after the perijove offer unique opportunities to observe the whole polar region from close distance. However, Juno’s instruments can only observe one hemisphere at a time. Fortunately, the Hubble Space Telescope points its 2.4 m mirror toward the opposite hemisphere during some of these time intervals, providing truly simultaneous observations of both poles. We compare observations from Juno-UVS with Far-UV imaging sequences from the Hubble’s Space Telescope Imaging Spectrograph (STIS). Juno-UVS acquires spectrally resolved images of 17 ms exposure every 30 s Juno spin in the 70-205 nm wavelength range, while STIS can acquire about 270 consecutive 10 s images per HST orbit in the 130-160 nm range, but without any spectral resolution. Despite some differences, these datasets are similar enough in terms of spectral coverage, temporal and spatial resolution to allow direct comparisons. On Jupiter, the magnetic field is highly asymmetric and displays significant localized anomalies. Furthermore, most processes leading to auroral emissions depend on the magnetic field magnitude, either in the equatorial plane, in the acceleration regions, or in the upper atmosphere. Investigating morphological and brightness discrepancies between the two hemispheres provides precious clues on the current systems flowing in the magnetosphere and on the charged particles acceleration mechanisms. [less ▲]

Detailed reference viewed: 9 (2 ULg)
Full Text
Peer Reviewed
See detailMorphology of the UV aurorae Jupiter during Juno’s first perijove observations
Bonfond, Bertrand ULg; Gladstone, G. R.; Grodent, Denis ULg et al

in Geophysical Research Letters (2017)

On 27 August 2016, the NASA Juno spacecraft performed its first close-up observations of Jupiter during its perijove. Here we present the UV images and color ratio maps from the Juno-ultraviolet ... [more ▼]

On 27 August 2016, the NASA Juno spacecraft performed its first close-up observations of Jupiter during its perijove. Here we present the UV images and color ratio maps from the Juno-ultraviolet spectrometer UV imaging spectrograph acquired at that time. Data were acquired during four sequences (three in the north, one in the south) from 5:00 UT to 13:00 UT. From these observations, we produced complete maps of the Jovian aurorae, including the nightside. The sequence shows the development of intense outer emission outside the main oval, first in a localized region (255 ∘ –295 ∘ System III longitude) and then all around the pole, followed by a large nightside protrusion of auroral emissions from the main emission into the polar region. Some localized features show signs of differential drift with energy, typical of plasma injections in the middle magnetosphere. Finally, the color-ratio map in the north shows a well-defined area in the polar region possibly linked to the polar cap. [less ▲]

Detailed reference viewed: 31 (6 ULg)
Full Text
See detailHST observations of Jupiter's UV aurora during Juno's orbits PJ03, PJ04 and PJ05
Grodent, Denis ULg; Gladstone, G Randall; Clarke, John T. et al

Poster (2017, April)

The intense ultraviolet auroral emissions of Jupiter are currently being monitored in the frame of a large Hubble Space Telescope (HST) program meant to support the NASA Juno prime mission. The present ... [more ▼]

The intense ultraviolet auroral emissions of Jupiter are currently being monitored in the frame of a large Hubble Space Telescope (HST) program meant to support the NASA Juno prime mission. The present study addresses the three first Juno orbits (PJ03, 04 and 05) during which HST obtained parallel observations. These three campaigns basically consist of a 2-week period bracketing the time of Juno’s closest approach of Jupiter (CA). At least one HST visit is scheduled every day during the week before and the week following CA. During the ∼12-hour period centered on CA and depending on observing constraints, several HST visits are programmed in order to obtain as many simultaneous observations with Juno-UVS as possible. In addition, at least one HST visit is obtained near Juno’s apojove, when UVS is continuously monitoring Jupiter’s global auroral power, without spatial resolution, for about 12 hours. We are using the Space Telescope Imaging Spectrograph (STIS) in time-tag mode in order to provide spatially resolved movies of Jupiter’s highly dynamic aurora with timescales ranging from seconds to several days. We discuss the preliminary exploitation of the HST data and present these results in such a way as to provide a global magnetospheric context for the different Juno instruments studying Jupiter’s magnetosphere, as well as for the numerous ground based and space based observatories participating to the Juno mission. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailMagnetic reconnection during steady magnetospheric convection and other magnetospheric modes
Hubert, Benoît ULg; Gérard, Jean-Claude ULg; Milan, Steve E. et al

in Annales Geophysicae (2017), 35

We use remote sensing of the proton aurora with the IMAGE-FUV SI12 (Imager for Magnetopause to Aurora Global Exploration-Far Ultraviolet-Spectrographic Imaging at 121.8 nm) instrument and radar ... [more ▼]

We use remote sensing of the proton aurora with the IMAGE-FUV SI12 (Imager for Magnetopause to Aurora Global Exploration-Far Ultraviolet-Spectrographic Imaging at 121.8 nm) instrument and radar measurements of the ionospheric convection from the SuperDARN (Super Dual Aurora Radar Network) facility to estimate the open magnetic flux in the Earth's magnetosphere and the reconnection rates at the dayside magnetopause and in the magnetotail during intervals of steady magnetospheric convection (SMC). We find that SMC intervals occur with relatively high open magnetic flux (average ˜ 0.745 GWb, standard deviation ˜ 0.16 GWb), which is often found to be nearly steady, when the magnetic flux opening and closure rates approximately balance around 55 kV on average, with a standard deviation of 21 kV. We find that the residence timescale of open magnetic flux, defined as the ratio between the open magnetospheric flux and the flux closure rate, is roughly 4 h during SMCs. Interestingly, this number is approximately what can be deduced from the discussion of the length of the tail published by Dungey (1965), assuming a solar wind speed of ˜ 450 km s[SUP]-1[/SUP]. We also infer an enhanced convection velocity in the tail, driving open magnetic flux to the nightside reconnection site. We compare our results with previously published studies in order to identify different magnetospheric modes. These are ordered by increasing open magnetic flux and reconnection rate as quiet conditions, SMCs, substorms (with an important overlap between these last two) and sawtooth intervals. [less ▲]

Detailed reference viewed: 17 (2 ULg)
Full Text
Peer Reviewed
See detailThe Martian diffuse aurora: a model of ultraviolet and visible emissions
Gérard, Jean-Claude ULg; Soret, Lauriane ULg; Shematovich, V.I. et al

in Icarus (2017), 288

A new type of Martian aurora, characterized by an extended spatial distribution, an altitude lower than the discrete aurora and electron precipitation up to 200 keV has been observed following solar ... [more ▼]

A new type of Martian aurora, characterized by an extended spatial distribution, an altitude lower than the discrete aurora and electron precipitation up to 200 keV has been observed following solar activity on several occasions from the MAVEN spacecraft. We describe the results of Monte Carlo simulations of the production of several ultraviolet and violet auroral emissions for initial electron energies extending from 0.25 to 200 keV. These include the CO2+ ultraviolet doublet (UVD) at 288.3 and 289.6 nm and the Fox–Duffendack–Barker (FDB) bands, CO Cameron and Fourth Positive bands, OI 130.4 and 297.2 nm and CI 156.1 nm and 165.7 nm multiplets. We calculate the nadir and limb production rates of several of these emissions for a unit precipitated energy flux. Our results indicate that electrons in the range 50-200 keV produce maximum CO2+ UVD emission below 75 km, in agreement with the MAVEN observations. We calculate the efficiency of photon production per unit precipitated electron power. The strongest emissions are the CO2+ FDB, UVD and CO Cameron bands and the oxygen mission at 297.2 nm. The metastable a 3Π state which radiates the Cameron bands is deactivated by collisions below about 110 km. As a consequence, we show that the Cameron band emission is expected to peak at a higher altitude than the CO2+ UVD and FDB bands. Collisional quenching also causes the intensity ratio of the CO2+ UVD to CO Cameron bands to increase below ∼100 km in the energetic diffuse aurora. [less ▲]

Detailed reference viewed: 26 (2 ULg)
See detailGlobal Simulation of UV atmospheric Emissions
Gonzalez-Galindo; Lopez-Valverde; Forget et al

Poster (2017, January 19)

Detailed reference viewed: 13 (1 ULg)
See detailThree Types of Aurora observed by MAVEN/IUVS: Implications for Mars’ upper Atmosphere Energy Budget
Connour; Schneider; Jain et al

Poster (2017, January 17)

Detailed reference viewed: 34 (4 ULg)
See detailNO Nightglow studies status
Stiepen, Arnaud ULg; Jain; Deighan et al

Conference (2017, January 16)

Detailed reference viewed: 9 (1 ULg)
Full Text
See detailMARTIAN ULTRAVIOLET AURORA: RESULTS OF MODEL SIMULATIONS
Gérard, Jean-Claude ULg; Soret, Lauriane ULg; Shematovich, V.I. et al

Conference (2017, January)

We present recent modeling results based on observations performed with the UV spectrographs on board the Mars Express and MAVEN missions.Two types of aurora are discussed: the localized and transient ... [more ▼]

We present recent modeling results based on observations performed with the UV spectrographs on board the Mars Express and MAVEN missions.Two types of aurora are discussed: the localized and transient discrete aurora and the more stable diffuse aurora observed during periods of active solar periods. [less ▲]

Detailed reference viewed: 22 (0 ULg)
Full Text
Peer Reviewed
See detailStagnation of Saturn's auroral emission at noon
Radioti, Aikaterini ULg; Grodent, Denis ULg; Gérard, Jean-Claude ULg et al

in Journal of Geophysical Research. Space Physics (2017)

Detailed reference viewed: 22 (2 ULg)
Full Text
Peer Reviewed
See detailJupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits
Connerney, J. E. P.; Adriani, A.; Allegrini, F. et al

in Science (2017), 356(6340), 826--832

Jupiter is the largest and most massive planet in our solar system. NASA\textquoterights Juno spacecraft arrived at Jupiter on 4 July 2016 and made its first close pass on 27 August 2016. Bolton et al ... [more ▼]

Jupiter is the largest and most massive planet in our solar system. NASA\textquoterights Juno spacecraft arrived at Jupiter on 4 July 2016 and made its first close pass on 27 August 2016. Bolton et al. present results from Juno\textquoterights flight just above the cloud tops, including images of weather in the polar regions and measurements of the magnetic and gravitational fields. Juno also used microwaves to peer below the visible surface, spotting gas welling up from the deep interior. Connerney et al. measured Jupiter\textquoterights aurorae and plasma environment, both as Juno approached the planet and during its first close orbit.Science, this issue p. 821, p. 826The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno\textquoterights capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno\textquoterights passage over the poles and traverse of Jupiter\textquoterights hazardous inner radiation belts. Juno\textquoterights energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator. [less ▲]

Detailed reference viewed: 53 (5 ULg)
Full Text
Peer Reviewed
See detailResponse of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno
Nichols, J. D.; Badman, S. V.; Bagenal, F. et al

in Geophysical Research Letters (2017)

We present the first comparison of Jupiter's auroral morphology with an extended, continuous and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the ... [more ▼]

We present the first comparison of Jupiter's auroral morphology with an extended, continuous and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the interplanetary conditions. We show that for ∼1-3 days following compression region onset the planet's main emission brightened. A duskside poleward region also brightened during compressions, as well as during shallow rarefaction conditions at the start of the program. The power emitted from the noon active region did not exhibit dependence on any interplanetary parameter, though the morphology typically differed between rarefactions and compressions. The auroras equatorward of the main emission brightened over ∼10 days following an interval of increased volcanic activity on Io. These results show that the dependence of Jupiter's magnetosphere and auroras on the interplanetary conditions are more diverse than previously thought. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailJuno-UVS Approach Observations of Jupiter's Auroras
Gladstone, G. R.; Versteeg, M. H.; Greathouse, T. K. et al

in Geophysical Research Letters (2017)

Juno-UVS observations of Jupiter's aurora obtained during approach are presented. Prior to the bow-shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar ... [more ▼]

Juno-UVS observations of Jupiter's aurora obtained during approach are presented. Prior to the bow-shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a rise time of ~2 hours and a decay time of ~5 hours. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailNitric Oxide Nightglow and Martian Mesospheric Circulation from MAVEN/IUVS Observations and LMD-MGCM Predictions
Stiepen, Arnaud ULg; Jain; Schneider et al

in Journal of Geophysical Research. Space Physics (2017)

We report results from a study of nitric oxide nightglow over the north- ern hemisphere of Mars during winter, the southern hemisphere during fall equinox and equatorial latitudes during summer in the ... [more ▼]

We report results from a study of nitric oxide nightglow over the north- ern hemisphere of Mars during winter, the southern hemisphere during fall equinox and equatorial latitudes during summer in the northern hemisphere based on observations of the delta and gamma bands between 190 and 270 nm by the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft. The emission reveals recombination of N and O atoms dissociated on the day- side of Mars and transported to the nightside. We characterize the bright- ness (from 0.2 to 30 kR) and altitude (from 40 to 115 km) of the NO night- glow layer, as well as its topside scale height (mean of 11 km). We show the possible impact of atmospheric waves forcing longitudinal variability, asso- ciated with an increased brightness by a factor 3 in the 140 - 200 longitude region in the northern hemisphere winter and in the -102 to -48 longitude region at summer. Such impact to the NO nightglow at Mars was not seen before. Quantitative comparison with calculations of the LMD-MGCM (Lab- oratoire de M et eorologie Dynamique - Global Circulation Model) suggests that the model globally reproduces the trends of the NO nightglow emission and its seasonal variation, but also indicates large discrepancies (up to a fac- tor 50 fainter in the model) in northern winter at low to mid-latitudes. This suggests that the predicted transport is too e cient towards the night win- ter pole in the thermosphere by 20 latitude north. [less ▲]

Detailed reference viewed: 15 (2 ULg)
See detailSeasonal Transport in Mars’ Mesosphere revealed by Nitric Oxide Nightglow vertical profiles and global images from IUVS/MAVEN
Stiepen, Arnaud ULg; Stewart; Jain et al

Conference (2017)

We analyze the ultraviolet nightglow in the atmosphere of Mars through Nitric Oxide (NO) δ and γ bands emis- sions. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation partly ... [more ▼]

We analyze the ultraviolet nightglow in the atmosphere of Mars through Nitric Oxide (NO) δ and γ bands emis- sions. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation partly dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried by the day-to-night hemispheric transport. They preferentially descend in the nightside mesosphere in the winter hemisphere, where they can radiatively recombine to form NO(C2Π). The excited molecules promptly relax by emitting photons in the UV δ bands and in the γ bands through cascades via the A2Σ, v’ = 0 state. These emissions are thus indicators of the N and O atom fluxes transported from the dayside to Mars’ nightside and the winter descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015). Observations of these emissions have been accumulated on a large dataset of nightside disk images and vertical profiles obtained at the limb by the Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2015) instrument when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is at its apoapsis and its periapsis phases along its orbit, respectively. We present discussion on the variability in the brightness, altitude and topside scale height of the emission with season, geographical position and local time and possible interpretation for local and global changes in the meso- sphere dynamics. IUVS images and limb scans reveal unexpected complex structure of the emission. The brightest emission is observed close to the winter pole. The emission is also surprisingly more intense in some sectors located close to the equator : at 120 ̊ and 150 ̊ longitude. Observations also reveal spots and streaks, indicating irregularities in the wind circulation pattern and possible impact of waves and tides. The disk images and limb profiles are compared to the LMD-MGCM model (Gonzàlez-Galindo et al., 2009 ; Lopez-Valverde et al., 2011) to focus on the seasonal, local time and geographical influences on the NO Nightglow emission. We will also provide a statistical study of the regions of enhanced brightness (i.e. splotches and streaks) and discuss possible interpretation from the comparison to the GCM. [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailInfluence of the crustal magnetic field on the Mars aurora electron flux and UV brightness
Bisikalo, D. V.; Shematovich, V. I.; Gérard, Jean-Claude ULg et al

in Icarus (2017), 282

Observations with the SPICAM instrument on board Mars Express have shown the occasional presence of localized ultraviolet nightside emissions associated with enhanced energetic electron fluxes. These ... [more ▼]

Observations with the SPICAM instrument on board Mars Express have shown the occasional presence of localized ultraviolet nightside emissions associated with enhanced energetic electron fluxes. These features generally occur in regions with significant radial crustal magnetic field. We use a Monte-Carlo electron transport model to investigate the role of the magnetic field on the downward and upward electron fluxes, the brightness and the emitted power of auroral emissions. Simulations based on an ASPERA-3 measured auroral electron precipitation indicate that magnetic mirroring leads to an intensification of the energy flux carried by upward moving electrons- from about 20% in the absence of crustal magnetic field up to 33-78% when magnetic field is included depending on magnetic field topology. Conservation of the particle flux in a flux tube implies that the presence of the B-field does not appreciably modify the emission rate profiles for an initially isotropic pitch angle distribution. However, we find that crustal magnetic field results in increase of the upward electron flux, and, consequently, in reduction of the total auroral brightness for given energy flux of precipitating electrons. [less ▲]

Detailed reference viewed: 30 (3 ULg)
Full Text
See detailThe complex behavior of the satellite footprints at Jupiter: the result of universal processes?
Bonfond, Bertrand ULg; Grodent, Denis ULg; Badman, Sarah V. et al

Poster (2016, December 14)

At Jupiter, some auroral emissions are directly related to the electromagnetic interaction between the moons Io, Europa and Ganymede on one hand and the rapidly rotating magnetospheric plasma on the other ... [more ▼]

At Jupiter, some auroral emissions are directly related to the electromagnetic interaction between the moons Io, Europa and Ganymede on one hand and the rapidly rotating magnetospheric plasma on the other hand. Out of the three, the Io footprint is the brightest and the most studied. Present in each hemisphere, it is made of at least three different spots and an extended trailing tail. The variability of the brightness of the spots as well as their relative location has been tentatively explained with a combination of Alfvén waves’ partial reflections on density gradients and bi-directional electron acceleration at high latitude. Should this scenario be correct, then the other footprints should also show the same behavior. Here we show that all footprints are, at least occasionally, made of several spots and they all display a tail. We also show that these spots share many characteristics with those of the Io footprint (i.e. some significant variability on timescales of 2-3 minutes). Additionally, we present some Monte-Carlo simulations indicating that the tails are also due to Alfvén waves electron acceleration rather than quasi-static electron acceleration. Even if some details still need clarification, these observations strengthen the scenario proposed for the Io footprint and thus indicate that these processes are universal. In addition, we will present some early results from Juno-UVS concerning the location and morphology of the footprints during the first low-altitude observations of the polar aurorae. These observations, carried out in previously unexplored longitude ranges, should either confirm or contradict our understanding of the footprints. [less ▲]

Detailed reference viewed: 35 (6 ULg)
Full Text
See detailJupiter’s auroras during the Juno approach phase as observed by the Hubble Space Telescope
Nichols, Jonathan D; Clarke, John T; Orton, Glennn S et al

Conference (2016, December 13)

We present movies of the Hubble Space Telescope (HST) observations of Jupiter’s FUV auroras observed during the Juno approach phase and first capture orbit, and compare with Juno observations of the ... [more ▼]

We present movies of the Hubble Space Telescope (HST) observations of Jupiter’s FUV auroras observed during the Juno approach phase and first capture orbit, and compare with Juno observations of the interplanetary medium near Jupiter and inside the magnetosphere. Jupiter’s FUV auroras indicate the nature of the dynamic processes occurring in Jupiter’s magnetosphere, and the approach phase provided a unique opportunity to obtain a full set of interplanetary data near to Jupiter at the time of a program of HST observations, along with the first simultaneous with Juno observations inside the magnetosphere. The overall goal was to determine the nature of the solar wind effect on Jupiter’s magnetosphere. HST observations were obtained with typically 1 orbit per day over three intervals: 16 May – 7 June, 22-30 June and 11-18 July, i.e. while Juno was in the solar wind, around the bow shock and magnetosphere crossings, and in the mid-latitude middle-outer magnetospheres. We show that these intervals are characterised by particularly dynamic polar auroras, and significant variations in the auroral power output caused by e.g. dawn storms, intense main emission and poleward forms. We compare the variation of these features with Juno observations of interplanetary compression regions and the magnetospheric environment during the intervals of these observations. [less ▲]

Detailed reference viewed: 34 (3 ULg)