References of "Frère, Jean-Marie"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailInhibition of Streptococcus pneumoniae pencillin-binding protein 2x and Actinomadura R39 DD-peptidase activities by ceftaroline.
Zervosen, Astrid ULg; Zapun, Andre; Frère, Jean-Marie ULg

in Antimicrobial Agents and Chemotherapy (2013), 57(1), 661-663

Although the rate of acylation of a penicillin-resistant form of Streptococcus pneumoniae PBP2x by ceftaroline is 80-fold lower than that of its penicillin-sensitive counterpart, it remains sufficiently ... [more ▼]

Although the rate of acylation of a penicillin-resistant form of Streptococcus pneumoniae PBP2x by ceftaroline is 80-fold lower than that of its penicillin-sensitive counterpart, it remains sufficiently high (k(2)/K = 12600 M(-1)s(-1)) to explain the sensitivity of the penicillin-resistant strain to this new cephalosporin. Surprisingly, the Actinomadura R39 DD-peptidase is not very sensitive to ceftaroline. [less ▲]

Detailed reference viewed: 17 (2 ULg)
Full Text
Peer Reviewed
See detailThe proline-rich motif of the proDer p 3 allergen propeptide is crucial for protease-protease interaction.
Dumez, Marie-Eve ULg; Herman, Julie; Campisi, Vincenzo ULg et al

in PloS one (2013), 8(9), 68014

The majority of proteases are synthesized in an inactive form, termed zymogen, which consists of a propeptide and a protease domain. The propeptide is commonly involved in the correct folding and specific ... [more ▼]

The majority of proteases are synthesized in an inactive form, termed zymogen, which consists of a propeptide and a protease domain. The propeptide is commonly involved in the correct folding and specific inhibition of the enzyme. The propeptide of the house dust mite allergen Der p 3, NPILPASPNAT, contains a proline-rich motif (PRM), which is unusual for a trypsin-like protease. By truncating the propeptide or replacing one or all of the prolines in the non-glycosylated zymogen with alanine(s), we demonstrated that the full-length propeptide is not required for correct folding and thermal stability and that the PRM is important for the resistance of proDer p 3 to undesired proteolysis when the protein is expressed in Pichia pastoris. Additionally, we followed the maturation time course of proDer p 3 by coupling a quenched-flow assay to mass spectrometry analysis. This approach allowed to monitor the evolution of the different species and to determine the steady-state kinetic parameters for activation of the zymogen by the major allergen Der p 1. This experiment demonstrated that prolines 5 and 8 are crucial for proDer p 3-Der p 1 interaction and for activation of the zymogen. [less ▲]

Detailed reference viewed: 13 (3 ULg)
Full Text
Peer Reviewed
See detailThe CphAII protein from Aquifex aeolicus exhibits a metal-dependent phosphodiesterase activity
Kupper, Michaël; Bauvois, Cédric; Frère, Jean-Marie ULg et al

in Extremophiles : Life Under Extreme Conditions (2012), 16(1)

The CphAII protein from the hyperthermophile Aquifex aeolicus shows the five conserved motifs of the metallo-β-lactamase (MBL) superfamily and presents 28% identity with the Aeromonas hydrophila subclass ... [more ▼]

The CphAII protein from the hyperthermophile Aquifex aeolicus shows the five conserved motifs of the metallo-β-lactamase (MBL) superfamily and presents 28% identity with the Aeromonas hydrophila subclass B2 CphA MBL. The gene encoding CphAII was amplified by PCR from the A. aeolicus genomic DNA and overexpressed in Escherichia coli using a pLex-based expression system. The recombinant CphAII protein was purified by a combination of heating (to denature E. coli proteins) and two steps of immobilized metal affinity chromatography. The purified enzyme preparation did not exhibit a β-lactamase activity but showed a metal-dependent phosphodiesterase activity versus bis-p-nitrophenyl phosphate and thymidine 5'-monophosphate p-nitrophenyl ester, with an optimum at 85°C. The circular dichroism spectrum was in agreement with the percentage of secondary structures characteristic of the MBL αββα fold. [less ▲]

Detailed reference viewed: 5 (0 ULg)
Full Text
Peer Reviewed
See detailDevelopment of new drugs for an old target — the penicillin binding proteins.
Zervosen, Astrid ULg; Sauvage, Eric ULg; Frère, Jean-Marie ULg et al

in Molecules (2012), 17(11), 12478-505

The widespread use of β-lactam antibiotics has led to the worldwide appearance of drug-resistant strains. Bacteria have developed resistance to β-lactams by two main mechanisms: the production of β ... [more ▼]

The widespread use of β-lactam antibiotics has led to the worldwide appearance of drug-resistant strains. Bacteria have developed resistance to β-lactams by two main mechanisms: the production of β-lactamases, sometimes accompanied by a decrease of outer membrane permeability, and the production of low-affinity, drug resistant Penicillin Binding Proteins (PBPs). PBPs remain attractive targets for developing new antibiotic agents because they catalyse the last steps of the biosynthesis of peptidoglycan, which is unique to bacteria, and lies outside the cytoplasmic membrane. Here we summarize the “current state of the art” of non-β-lactam inhibitors of PBPs, which have being developed in an attempt to counter the emergence of β-lactam resistance. These molecules are not susceptible to hydrolysis by β-lactamases and thus present a real alternative to β-lactams. We present transition state analogs such as boronic acids, which can covalently bind to the active serine residue in the catalytic site. Molecules containing ring structures different from the β-lactam-ring like lactivicin are able to acylate the active serine residue. High throughput screening methods, in combination with virtual screening methods and structure based design, have allowed the development of new molecules. Some of these novel inhibitors are active against major pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and thus open avenues new for the discovery of novel antibiotics. [less ▲]

Detailed reference viewed: 35 (8 ULg)
Full Text
Peer Reviewed
See detailUnexpected tricovalent binding mode of boronic acids within the active site of a penicillin binding protein.
Zervosen, Astrid ULg; Herman, Raphaël ULg; Kerff, Frédéric ULg et al

in Journal of the American Chemical Society (2011)

Boronic acids bearing appropriate side chains are good inhibitors of serine amidohydrolases. The boron usually adopts a tetrahedral conformation, bound to the nucleophilic serine of the active site and ... [more ▼]

Boronic acids bearing appropriate side chains are good inhibitors of serine amidohydrolases. The boron usually adopts a tetrahedral conformation, bound to the nucleophilic serine of the active site and mimicking the transition state of the enzymatic reaction. We have solved the structures of complexes of a penicillin-binding protein, the DD-peptidase from Actinomadura sp. R39, with four amidomethylboronic acids (2,6 dimethoxybenzamidomethylboronic acid, phenylacetamidomethylboronic acid, 2-chlorobenzamidomethylboronic acid, and 2-nitrobenzamidomethylboronic acid) and the pinacol ester derived from phenylacetamidomethylboronic acid. We found that, in each case, the boron forms a tricovalent adduct with Ogamma of Ser49, Ser298, and the terminal amine group of Lys410, three key residues involved in the catalytic mechanism of penicillin-binding proteins. This represents the first tricovalent enzyme-inhibitor adducts observed by crystallography. In two of the five R39-boronate structures, the boronic acid is found as a tricovalent adduct in two monomers of the asymmetric unit and as a monocovalent adduct with the active serine in the two remaining monomers of the asymmetric unit. Formation of the tricovalent complex from a classical monocovalent complex may involve rotation around the Ser49 Calpha-Cbeta bond to place the boron in a position to interact with Ser298 and Lys410, and a twisting of the side chain amide such that its carbonyl oxygen is able to hydrogen bond to the oxyanion hole NH of Thr413. Biphasic kinetics were observed in three of the five cases and details of the reaction between R39 and 2,6-dimethoxybenzamidomethylboronic acid were studied. Observation of biphasic kinetics was not, however, thought to be correlated to formation of tricovalent complexes, assuming that the latter do form in solution. Based on the crystallographic and kinetic results, a reaction scheme for this unexpected inhibition by boronic acids is proposed. [less ▲]

Detailed reference viewed: 42 (10 ULg)
Full Text
Peer Reviewed
See detailBroad antibiotic resistance profile of the subclass B3 metallo-β-lactamase GOB-1, a di-zinc enzyme.
Horsfall, Louise; Izougarhane, Youssef; Lassaux, Patricia et al

in FEBS Journal (2011), 278(8)

The metallo-β-lactamase (MBL) GOB-1 was expressed via a T7 expression system in Escherichia coli BL21(DE3). The MBL was purified to homogeneity and shown to exhibit a broad substrate profile, hydrolyzing ... [more ▼]

The metallo-β-lactamase (MBL) GOB-1 was expressed via a T7 expression system in Escherichia coli BL21(DE3). The MBL was purified to homogeneity and shown to exhibit a broad substrate profile, hydrolyzing all the tested β-lactam compounds efficiently. The GOB enzymes are unique among MBLs due to the presence of a glutamine residue at position 116, a zinc-binding residue in all known class B1 and B3 MBL structures. Here we produced and studied the Q116A, Q116N and Q116H mutants. The substrate profiles were similar for each mutant, but with significantly reduced activity compared with that of the wild-type. In contrast to the Q116H enzyme, which bound two zinc ions just like the wild-type, only one zinc ion is present in Q116A and Q116N. These results suggest that the Q116 residue plays a role in the binding of the zinc ion in the QHH site. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailEffects of monopropanediamino-beta-cyclodextrin on the denaturation process of the hybrid protein BlaPChBD.
Vandevenne, Marylène ULg; GASPARD, Genevieve ULg; Belgsir, E. M. et al

in Biochimica et biophysica acta (2011)

Irreversible accumulation of protein aggregates represents an important problem both in vivo and in vitro. The aggregation of proteins is of critical importance in a wide variety of biomedical situations ... [more ▼]

Irreversible accumulation of protein aggregates represents an important problem both in vivo and in vitro. The aggregation of proteins is of critical importance in a wide variety of biomedical situations, ranging from diseases (such as Alzheimer's and Parkinson's diseases) to the production (e.g. inclusion bodies), stability, storage and delivery of protein drugs. beta-Cyclodextrin (beta-CD) is a circular heptasaccharide characterized by a hydrophilic exterior and a hydrophobic interior ring structure. In this research, we studied the effects of a chemically modified beta-CD (BCD07056), on the aggregating and refolding properties of BlaPChBD, a hybrid protein obtained by inserting the chitin binding domain of the human macrophage chitotriosidase into the class A beta-lactamase BlaP from Bacillus licheniformis 749/I during its thermal denaturation. The results show that BCD07056 strongly increases the refolding yield of BlaPChBD after thermal denaturation and constitutes an excellent additive to stabilize the protein over time at room temperature. Our data suggest that BCD07056 acts early in the denaturation process by preventing the formation of an intermediate which leads to an aggregated state. Finally, the role of beta-CD derivatives on the stability of proteins is discussed. [less ▲]

Detailed reference viewed: 30 (4 ULg)
Full Text
Peer Reviewed
See detailSmall molecule inhibitors of peptidoglycan synthesis targeting the lipid II precursor.
Derouaux, Adeline ULg; Turk, Samo; Olrichs, Nick K et al

in Biochemical Pharmacology (2011), 81(9), 1098-105

Bacterial peptidoglycan glycosyltransferases (GTs) of family 51 catalyze the polymerization of the lipid II precursor into linear peptidoglycan strands. This activity is essential to bacteria and ... [more ▼]

Bacterial peptidoglycan glycosyltransferases (GTs) of family 51 catalyze the polymerization of the lipid II precursor into linear peptidoglycan strands. This activity is essential to bacteria and represents a validated target for the development of new antibacterials. Application of structure-based virtual screening to the National Cancer Institute library using eHits program and the structure of the glycosyltransferase domain of the Staphylococcus aureus penicillin-binding protein 2 resulted in the identification of two small molecules analogues 5, a 2-[1-[(2-chlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine and 5b, a 2-[1-[(3,4-dichlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine that exhibit antibacterial activity against several Gram-positive bacteria but were less active on Gram-negative bacteria. The two compounds inhibit the activity of five GTs in the micromolar range. Investigation of the mechanism of action shows that the compounds specifically target peptidoglycan synthesis. Unexpectedly, despite the fact that the compounds were predicted to bind to the GT active site, compound 5b was found to interact with the lipid II substrate via the pyrophosphate motif. In addition, this compound showed a negatively charged phospholipid-dependent membrane depolarization and disruption activity. These small molecules are promising leads for the development of more active and specific compounds to target the essential GT step in cell wall synthesis. [less ▲]

Detailed reference viewed: 65 (15 ULg)
Full Text
Peer Reviewed
See detailIndol-2-yl ethanones as novel indoleamine 2,3-dioxygenase (IDO) inhibitors.
Dolusic, Eduard; Larrieu, Pierre; Blanc, Sébastien et al

in Bioorganic & Medicinal Chemistry (2011), 19(4), 1550-61

Indoleamine 2,3-dioxygenase (IDO) is a heme dioxygenase which has been shown to be involved in the pathological immune escape of diseases such as cancer. The synthesis and structure-activity relationships ... [more ▼]

Indoleamine 2,3-dioxygenase (IDO) is a heme dioxygenase which has been shown to be involved in the pathological immune escape of diseases such as cancer. The synthesis and structure-activity relationships (SAR) of a novel series of IDO inhibitors based on the indol-2-yl ethanone scaffold is described. In vitro and in vivo biological activities have been evaluated, leading to compounds with IC(50) values in the micromolar range in both tests. Introduction of small substituents in the 5- and 6-positions of the indole ring, indole N-methylation and variations of the aromatic side chain are all well tolerated. An iron coordinating group on the linker is a prerequisite for biological activity, thus corroborating the virtual screening results. [less ▲]

Detailed reference viewed: 39 (4 ULg)
Full Text
Peer Reviewed
See detailDiscovery and preliminary SARs of keto-indoles as novel indoleamine 2,3-dioxygenase (IDO) inhibitors.
Dolusic, Eduard; Larrieu, Pierre; Blanc, Sebastien et al

in European journal of medicinal chemistry (2011), 46(7), 3058-65

Indoleamine 2,3-dioxygenase (IDO) is an important new therapeutic target for the treatment of cancer. With the aim of discovering novel IDO inhibitors, a virtual screen was undertaken and led to the ... [more ▼]

Indoleamine 2,3-dioxygenase (IDO) is an important new therapeutic target for the treatment of cancer. With the aim of discovering novel IDO inhibitors, a virtual screen was undertaken and led to the discovery of the keto-indole derivative 1a endowed with an inhibitory potency in the micromolar range. Detailed kinetics were performed and revealed an uncompetitive inhibition profile. Preliminary SARs were drawn in this series and corroborated the putative binding orientation as suggested by docking. [less ▲]

Detailed reference viewed: 34 (6 ULg)
Full Text
Peer Reviewed
See detailThree factors that modulate the activity of class D β-lactamases and interfere with the post-translational carboxylation of Lys 70
Vercheval, Lionel ULg; Di Paolo, Alexandre ULg; Borel, Franck et al

in Biochemical Journal (2010), 432(3), 495-504

Lys-70 carboxylation in the active site of class D β lactamases is essential for their activity. Structural, kinetic and affinity studies show that this post-translational modification can be affected by ... [more ▼]

Lys-70 carboxylation in the active site of class D β lactamases is essential for their activity. Structural, kinetic and affinity studies show that this post-translational modification can be affected by the presence of a poor substrate such as moxalactam but also by the V117T substitution. Val-117 is a strictly conserved hydrophobic residue located in the active site. In addition, inhibition of class D β lactamases by chloride ions is due to a competition between the side chain carboxylate of the modified Lys 70 and chloride ions. Determination of the individual kinetic constants shows that the deacylation of the acyl-enzyme is the rate limiting step for the wild type OXA 10 β lactamase. [less ▲]

Detailed reference viewed: 80 (22 ULg)
Full Text
Peer Reviewed
See detailNH-1,2,3-Triazole-based Inhibitors of the VIM-2 Metallo-β- Lactamase: Synthesis and Structure-Activity Studies
Weide, Timo; Saldanha, S. Adrian; Minond, Dmitriy et al

in ACS Medicinal Chemistry Letters (2010), 1(4)

Metallo-ß-lactamases (MBL) are an emerging cause of bacterial resistance to antibiotic treatment. The VIM-2 ß-lactamase is the most commonly encountered MBL in clinical isolates worldwide. Described here ... [more ▼]

Metallo-ß-lactamases (MBL) are an emerging cause of bacterial resistance to antibiotic treatment. The VIM-2 ß-lactamase is the most commonly encountered MBL in clinical isolates worldwide. Described here are potent and selective small molecule inhibitors of VIM-2 containing the arylsulfonyl-NH-1,2,3-triazole chemotype that potentiate the efficacy of the ß-lactam, imipenem, in E. coli. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailMercaptophosphonate Compounds as Broad-Spectrum Inhibitors of the Metallo-β-lactamases
Lassaux, Patricia; Hamel, Matthieu; Gulea, Mihaela et al

in Journal of Medicinal Chemistry (2010), 53

In this paper, we investigated the inhibitory effect of mercaptophosphonate derivatives against the three subclasses of MBLs (B1, B2, and B3). All 14 tested mercaptophosphonates, with the exception of one ... [more ▼]

In this paper, we investigated the inhibitory effect of mercaptophosphonate derivatives against the three subclasses of MBLs (B1, B2, and B3). All 14 tested mercaptophosphonates, with the exception of one, behaved as competitive inhibitors for the three subclasses. <br />Apart from two compounds, all the mercaptophosphonates tested exhibit a good inhibitory effect on the subclass B2 MBL CphA with low inhibition constants (Ki<15 μM). Interestingly, compound 18 turned out to be a potent broad spectrum MBL inhibitor. <br />The crystallographic structures of the CphA-10a and CphA-18 complexes indicated that the sulfur atom of 10a and the phosphonato group of 18 interact with the Zn2þ ion, respectively. Molecular modeling studies of the interactions between two compounds and the VIM-4 (B1), CphA (B2), and FEZ-1 (B3) enzymes brought to light different binding modes depending on the enzyme and the inhibitor, consistent with the crystallographic structures. [less ▲]

Detailed reference viewed: 27 (7 ULg)
Full Text
Peer Reviewed
See detail1,6-AnhMurNAc derivatives for assay development of amidase AmiD.
Mercier, Frédéric ULg; Zervosen, Astrid ULg; Teller, Nathalie et al

in Bioorganic & Medicinal Chemistry (2010), 18(21), 7422-31

Various peptidoglycan fragments were synthesized from two anhydro-muramic acid derivatives protected with a Bn or a PMB group at the 4th position, in homogenate phase or on a solid support. In order to ... [more ▼]

Various peptidoglycan fragments were synthesized from two anhydro-muramic acid derivatives protected with a Bn or a PMB group at the 4th position, in homogenate phase or on a solid support. In order to facilitate HPLC detection, a chromophoric group was attached to the peptide chain. The periplasmic amidase sAmiD of Escherichia coli was used to cleave the amide bond between the lactyl group of the MurNAc and the alpha-amino group of L-Ala where the peptide chain was at least a dipeptide (L-Ala-gamma-D-Glu) amidated by benzylamine on the gamma-carboxyl group of D-Glu. In the presence of a tripeptide chain (L-Ala-gamma-D-Glu-L-Lys) or a tetrapeptide chain (L-Ala-gamma-D-Glu-m-A(2)pm-D-Ala) higher hydrolysis rates were observed. We have also demonstrated that the presence of TNB on the epsilon-amino group of L-Lys only has a small influence on the hydrolysis capacity of sAmiD. [less ▲]

Detailed reference viewed: 157 (46 ULg)
Full Text
Peer Reviewed
See detailSpecific Structural Features of the N-Acetylmuramoyl-l-Alanine Amidase AmiD from Escherichia coli and Mechanistic Implications for Enzymes of This Family.
Kerff, Frédéric ULg; Petrella, Stéphanie; Mercier, Frédéric ULg et al

in Journal of Molecular Biology (2010), 397

AmiD is the fifth identified N-acetylmuramoyl-l-alanine zinc amidase of Escherichia coli. This periplasmic lipoprotein is anchored in the outer membrane and has a broad specificity. AmiD is capable of ... [more ▼]

AmiD is the fifth identified N-acetylmuramoyl-l-alanine zinc amidase of Escherichia coli. This periplasmic lipoprotein is anchored in the outer membrane and has a broad specificity. AmiD is capable of cleaving the intact peptidoglycan (PG) as well as soluble fragments containing N-acetylmuramic acid regardless of the presence of an anhydro form or not, unlike the four other amidases, AmiA, AmiB, AmiC, and AmpD, which have some specificity. AmiD function is, however, not clearly established but it could be part of the enzymatic machinery involved in the PG turnover in E. coli. We solved three structures of the E. coli zinc amidase AmiD devoid of its lipidic anchorage: the holoenzyme, the apoenzyme in complex with the substrate anhydro-N-acetylmuramic-acid-l-Ala-gamma-d-Glu-l-Lys, and the holoenzyme in complex with the l-Ala-gamma-d-Glu-l-Lys peptide, the product of the hydrolysis of this substrate by AmiD. The AmiD structure shows a relatively flexible N-terminal extension that allows an easy reach of the PG by the enzyme inserted into the outer membrane. The C-terminal domain provides a potential extended geometrical complementarity to the substrate. AmiD shares a common fold with AmpD, the bacteriophage T7 lysozyme, and the PG recognition proteins, which are receptor proteins involved in the innate immune responses of a wide range of organisms. Analysis of the different structures reveals the similarity between the catalytic mechanism of zinc amidases of the AmiD family and the thermolysin-related zinc peptidases. [less ▲]

Detailed reference viewed: 76 (16 ULg)
Full Text
Peer Reviewed
See detailFolding of class A beta-lactamases is rate-limited by peptide bond isomerization and occurs via parallel pathways.
Vandenameele, Julie ULg; Lejeune, Annabelle ULg; Di Paolo, Alexandre ULg et al

in Biochemistry (2010), 49(19), 4264-75

Class A beta-lactamases (M(r) approximately 29000) provide good models for studying the folding mechanism of large monomeric proteins. In particular, the highly conserved cis peptide bond between residues ... [more ▼]

Class A beta-lactamases (M(r) approximately 29000) provide good models for studying the folding mechanism of large monomeric proteins. In particular, the highly conserved cis peptide bond between residues 166 and 167 at the active site of these enzymes controls important steps in their refolding reaction. In this work, we analyzed how conformational folding, reactivation, and cis/trans peptide bond isomerizations are interrelated in the folding kinetics of beta-lactamases that differ in the nature of the cis peptide bond, which involves a Pro167 in the BS3 and TEM-1 enzyme, a Leu167 in the NMCA enzyme, and which is missing in the PER-1 enzyme. The analysis of folding by spectroscopic probes and by the regain of enzymatic activity in combination with double-mixing procedures indicates that conformational folding can proceed when the 166-167 bond is still in the incorrect trans form. The very slow trans --> cis isomerization of the Glu166-Xaa167 peptide bond, however, controls the final step of folding and is required for the regain of the enzymatic activity. This very slow phase is absent in the refolding of PER-1, in which the Glu166-Ala167 peptide bond is trans. The double-mixing experiments revealed that a second slow kinetic phase is caused by the cis/trans isomerization of prolines that are trans in the folded proteins. The folding of beta-lactamases is best described by a model that involves parallel pathways. It highlights the role of peptide bond cis/trans isomerization as a kinetic determinant of folding. [less ▲]

Detailed reference viewed: 51 (14 ULg)
Full Text
Peer Reviewed
See detailMutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding.
Borgianni, Luisa; Vandenameele, Julie ULg; Matagne, André ULg et al

in Antimicrobial Agents and Chemotherapy (2010), 54(8), 3197-204

Metallo-beta-lactamase (MBL)-producing bacteria are emerging worldwide and represent a formidable threat to the efficacy of relevant beta-lactams, including carbapenems, expanded-spectrum cephalosporins ... [more ▼]

Metallo-beta-lactamase (MBL)-producing bacteria are emerging worldwide and represent a formidable threat to the efficacy of relevant beta-lactams, including carbapenems, expanded-spectrum cephalosporins, and beta-lactamase inactivator/beta-lactam combinations. VIM-2 is currently the most widespread MBL and represents a primary target for MBL inhibitor research, the clinical need for which is expected to further increase in the future. Using a saturation mutagenesis approach, we probed the importance of four residues (Phe-61, Ala-64, Tyr-67, and Trp-87) located close to the VIM-2 active site and putatively relevant to the enzyme activity based on structural knowledge of the enzyme and on structure-activity relationships of the subclass B1 MBLs. The ampicillin MIC values shown by the various mutants were affected very differently depending on the randomized amino acid position. Position 64 appeared to be rather tolerant to substitution, and kinetic studies showed that the A64W mutation did not significantly affect substrate hydrolysis or binding, representing an important difference from IMP-type enzymes. Phe-61 and Tyr-67 could be replaced with several amino acids without the ampicillin MIC being significantly affected, but in contrast, Trp-87 was found to be critical for ampicillin resistance. Further kinetic and biochemical analyses of W87A and W87F variants showed that this residue is apparently important for the structure and proper folding of the enzyme but, surprisingly, not for its catalytic activity. These data support the critical role of residue 87 in the stability and folding of VIM-2 and might have strong implications for MBL inhibitor design, as this residue would represent an ideal target for interaction with small molecules. [less ▲]

Detailed reference viewed: 24 (3 ULg)
Full Text
Peer Reviewed
See detailCritical role of tryptophan 154 for the activity and stability of class D beta-lactamases.
Baurin, Stephane; Vercheval, Lionel ULg; Bouillenne, Fabrice ULg et al

in Biochemistry (2009), 48(47), 11252-63

The catalytic efficiency of the class D beta-lactamase OXA-10 depends critically on an unusual carboxylated lysine as the general base residue for both the enzyme acylation and deacylation steps of ... [more ▼]

The catalytic efficiency of the class D beta-lactamase OXA-10 depends critically on an unusual carboxylated lysine as the general base residue for both the enzyme acylation and deacylation steps of catalysis. Evidence is presented that the interaction between the indole group of Trp154 and the carboxylated lysine is essential for the stability of the posttranslationally modified Lys70. Substitution of Trp154 by Gly, Ala, or Phe yielded noncarboxylated enzymes which displayed poor catalytic efficiencies and reduced stability when compared to the wild-type OXA-10. The W154H mutant was partially carboxylated. In addition, the maximum values of k(cat) and k(cat)/K(M) were shifted toward pH 7, indicating that the carboxylation state of Lys70 is dependent on the protonation level of the histidine. A comparison of the three-dimensional structures of the different proteins also indicated that the Trp154 mutations did not modify the overall structures of OXA-10 but induced an increased flexibility of the Omega-loop in the active site. Finally, the deacylation-impaired W154A mutant was used to determine the structure of the acyl-enzyme complex with benzylpenicillin. These results indicate a role of the Lys70 carboxylation during the deacylation step and emphasize the importance of Trp154 for the ideal positioning of active site residues leading to an optimum activity. [less ▲]

Detailed reference viewed: 50 (11 ULg)
Full Text
Peer Reviewed
See detailPositively Cooperative Binding of Zinc Ions to Bacillus cereus 569/H/9 beta-Lactamase II Suggests that the Binuclear Enzyme Is the Only Relevant Form for Catalysis
Jacquin, Olivier ULg; Balbeur, Dorothée ULg; Damblon, Christian ULg et al

in Journal of Molecular Biology (2009), 392(5), 1278-1291

Metallo-beta-lactamases catalyze the hydrolysis of most beta-lactam antibiotics and hence represent a major clinical concern. While enzymes belonging to subclass B1 have been shown to display maximum ... [more ▼]

Metallo-beta-lactamases catalyze the hydrolysis of most beta-lactam antibiotics and hence represent a major clinical concern. While enzymes belonging to subclass B1 have been shown to display maximum activity as dizinc species, the actual metal-to-protein stoichiometry and the affinity for zinc are not clear. We have further investigated the process of metal binding to the beta-lactamase H from Bacillus cereus 569/H/9 (known as BcII). Zinc binding was monitored using complementary biophysical techniques, including circular dichroism in the far-UV, enzymatic activity measurements, competition with a chromophoric chelator, mass spectrometry, and nuclear magnetic resonance. Most noticeably, mass spectrometry and nuclear magnetic resonance experiments, together with catalytic activity measurements, demonstrate that two zinc ions bind cooperatively to the enzyme active site (with K-1/K-2 >= 5) and, hence, that catalysis is associated with the dizinc enzyme species only. Furthermore, competitive experiments with the chromophoric chelator Mag-Fura-2 indicates K-2 < 80 nM. This contrasts with cadmium binding, which is clearly a noncooperative process with the mono form being the only species significantly populated in the presence of 1 molar equivalent of Cd(II). Interestingly, optical measurements reveal that although the apo and dizinc species exhibit undistinguishable tertiary structural organizations, the metal-depleted enzyme shows a significant decrease in its alpha-helical content, presumably associated with enhanced flexibility. (C) 2009 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 81 (23 ULg)