References of "Fonze, E"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCrystal structure of Enterobacter cloacae 908R class C beta-lactamase bound to iodo-acetamido-phenyl boronic acid, a transition-state analogue
Wouters, J.; Fonze, E.; Vermeire, M. et al

in Cellular and Molecular Life Sciences (2003), 60(8), 1764-1773

The structures of the, class C beta-lactamase from Enterobacter cloacae 908R alone and in complex with a baronic acid transition-state analogue were determined by X-ray crystallography at 2.1 and 2.3 ... [more ▼]

The structures of the, class C beta-lactamase from Enterobacter cloacae 908R alone and in complex with a baronic acid transition-state analogue were determined by X-ray crystallography at 2.1 and 2.3 Angstrom, respectively. The structure of the enzyme resembles those of other class C beta-lactamases. The structure of the. complex with the transition-state analogue, iodo-acetamido-phenyl boronic acid, shows that the inhibitor is covalently, bound to the active-site serine (Ser64). Binding of the inhibitor within the active site is compared with previously determined structures of complexes with other class C enzymes. The structure of the boronic acid adduct indicates ways to improve the affinity of this class of inhibitors. This structure of 908R class C beta-lactamase in complex with a transitionstate analogue provides further insights into the mechanism of action of these hydrolases. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailThe 2.4-A crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin.
Sauvage, Eric ULg; Kerff, Frédéric ULg; Fonze, E. et al

in Cellular and Molecular Life Sciences : CMLS (2002), 59(7), 1223-32

Penicillin-binding proteins (PBPs) are membrane proteins involved in the final stages of peptidoglycan synthesis and represent the targets of beta-lactam antibiotics. Enterococci are naturally resistant ... [more ▼]

Penicillin-binding proteins (PBPs) are membrane proteins involved in the final stages of peptidoglycan synthesis and represent the targets of beta-lactam antibiotics. Enterococci are naturally resistant to these antibiotics because they produce a PBP, named PBP5fm in Enterococcus faecium, with low-level affinity for beta-lactams. We report here the crystal structure of the acyl-enzyme complex of PBP5fm with benzylpenicillin at a resolution of 2.4 A. A characteristic of the active site, which distinguishes PBP5fm from other PBPs of known structure, is the topology of the loop 451-465 defining the left edge of the cavity. The residue Arg464, involved in a salt bridge with the residue Asp481, confers a greater rigidity to the PBP5fm active site. In addition, the presence of the Val465 residue, which points into the active site, reducing its accessibility, could account for the low affinity of PBP5fm for beta-lactam. This loop is common to PBPs of low affinity, such as PBP2a from Staphylococcus aureus and PBP3 from Bacillus subtilis. Moreover, the insertion of a serine after residue 466 in the most resistant strains underlines even more the determining role of this loop in the recognition of the substrates. [less ▲]

Detailed reference viewed: 28 (6 ULg)
Full Text
Peer Reviewed
See detailExpression, purification, crystallization and preliminary X-ray analysis of the native class C beta-lactamase from Enterobacter cloacae 908R and two mutants.
Wouters, J.; Charlier, Paulette ULg; Monnaie, D. et al

in Acta Crystallographica Section D-Biological Crystallography (2001), 57(Pt 1), 162-4

Crystals have been obtained of the Enterobacter cloacae 908R beta-lactamase and two point mutants by the vapour-diffusion method using similar conditions [pH 9.0, polyethylene glycol (M(r) = 6000) as ... [more ▼]

Crystals have been obtained of the Enterobacter cloacae 908R beta-lactamase and two point mutants by the vapour-diffusion method using similar conditions [pH 9.0, polyethylene glycol (M(r) = 6000) as precipitant]. The three crystal forms belong to the orthorhombic space group P2(1)2(1)2, with roughly the same unit-cell parameters; i.e. for the wild-type crystals a = 46.46, b = 82.96, c = 95.31 A. In the best cases, the crystals diffract to about 2.1 A resolution on a rotating-anode X-ray source at room temperature. Co-crystallization experiments of poor substrates with the wild-type protein and the active-site serine mutant (S64C) are planned and should lead to a better understanding of the catalytic mechanism of class C beta-lactamases. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailThe Crystal Structure Of A Penicilloyl-Serine Transferase Of Intermediate Penicillin Sensitivity - The Dd-Transpeptidase Of Streptomyces K15
Fonze, E.; Vermeire, M.; Nguyen-Disteche, M. et al

in Journal of Biological Chemistry (1999), 274(31), 21853-60

The serine DD-transpeptidase/penicillin-binding protein of Streptomyces K15 catalyzes peptide bond formation in a way that mimics the penicillin-sensitive peptide cross-linking reaction involved in ... [more ▼]

The serine DD-transpeptidase/penicillin-binding protein of Streptomyces K15 catalyzes peptide bond formation in a way that mimics the penicillin-sensitive peptide cross-linking reaction involved in bacterial cell wall peptidoglycan assembly. The Streptomyces K15 enzyme is peculiar in that it can be considered as an intermediate between classical penicillin-binding proteins, for which benzylpenicillin is a very efficient inactivator, and the resistant penicillin-binding proteins that have a low penicillin affinity. With its moderate penicillin sensitivity, the Streptomyces K15 DD-transpeptidase would be helpful in the understanding of the structure-activity relationship of this penicillin-recognizing protein superfamily. The structure of the Streptomyces K15 enzyme has been determined by x-ray crystallography at 2.0-A resolution and refined to an R-factor of 18.6%. The fold adopted by this 262-amino acid polypeptide generates a two-domain structure that is close to those of class A beta-lactamases. However, the Streptomyces K15 enzyme has two particular structural features. It lacks the amino-terminal alpha-helix found in the other penicilloyl-serine transferases, and it exhibits, at its surface, an additional four-stranded beta-sheet. These two characteristics might serve to anchor the enzyme in the plasma membrane. The overall topology of the catalytic pocket of the Streptomyces K15 enzyme is also comparable to that of the class A beta-lactamases, except that the Omega-loop, which bears the essential catalytic Glu(166) residue in the class A beta-lactamases, is entirely modified. This loop adopts a conformation similar to those found in the Streptomyces R61 DD-carboxypeptidase and class C beta-lactamases, with no equivalent acidic residue. [less ▲]

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailX-ray studies of enzymes that interact with penicillins.
Kelly, J. A.; Kuzin, A. P.; Charlier, Paulette ULg et al

in Cellular and Molecular Life Sciences : CMLS (1998), 54(4), 353-8

The technique of X-ray diffraction has been successfully applied to enzymes associated with peptidoglycan biosynthesis. The technique has taught us a great deal about the structures and catalytic ... [more ▼]

The technique of X-ray diffraction has been successfully applied to enzymes associated with peptidoglycan biosynthesis. The technique has taught us a great deal about the structures and catalytic mechanisms of penicillin-binding proteins and beta-lactamases. An insight into the structural basis for antibiotic resistance is given. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Peer Reviewed
See detailThe catalytic mechanism of beta-lactamases: NMR titration of an active-site lysine residue of the TEM-1 enzyme.
Damblon, Christian ULg; Raquet, X.; Lian, L. Y. et al

in Proceedings of the National Academy of Sciences of the United States of America (1996), 93(5), 1747-52

Beta-Lactamases are widespread in the bacterial world, where they are responsible for resistance to penicillins, cephalosporins, and related compounds, currently the most widely used antibacterial agents ... [more ▼]

Beta-Lactamases are widespread in the bacterial world, where they are responsible for resistance to penicillins, cephalosporins, and related compounds, currently the most widely used antibacterial agents. Detailed structural and mechanistic understanding of these enzymes can be expected to guide the design of new antibacterial compounds resistant to their action. A number of high-resolution structures are available for class A beta-lactamases, whose catalytic mechanism involves the acylation of a serine residue at the active site. The identity of the general base which participates in the activation of this serine residue during catalysis has been the subject of controversy, both a lysine residue and a glutamic acid residue having been proposed as candidates for this role. We have used the pH dependence of chemical modification of epsilon-amino groups by 2,4,6,-trinitrobenzenesulfonate and the pH dependence of the epsilon-methylene 1H and 13C chemical shifts (in enzyme selectively labeled with [epsilon-13C]lysine) to estimate the pKa of the relevant lysine residue, lysine-73, of TEM-1 beta-lactamase. Both methods show that the pKa of this residue is > 10, making it very unlikely that this residue could act as a proton acceptor in catalysis. An alternative mechanism in which this role is performed by glutamate-166 through an intervening water molecule is described. [less ▲]

Detailed reference viewed: 28 (4 ULg)
Full Text
Peer Reviewed
See detailTEM1 beta-lactamase structure solved by molecular replacement and refined structure of the S235A mutant.
Fonze, E.; Charlier, Paulette ULg; To'th, Y. et al

in Acta Crystallographica Section D-Biological Crystallography (1995), 51(Pt 5), 682-94

beta-Lactamases are bacterial enzymes which catalyse the hydrolysis of the beta-lactam ring of penicillins, cephalosporins and related compounds, thus inactivating these antibiotics. The crystal structure ... [more ▼]

beta-Lactamases are bacterial enzymes which catalyse the hydrolysis of the beta-lactam ring of penicillins, cephalosporins and related compounds, thus inactivating these antibiotics. The crystal structure of the TEM1 beta-lactamase has been determined at 1.9 A resolution by the molecular-replacement method, using the atomic coordinates of two homologous beta-lactamase refined structures which show about 36% strict identity in their amino-acid sequences and 1.96 A r.m.s. deviation between equivalent Calpha atoms. The TEM1 enzyme crystallizes in space group P2(1)2(1)2(1) and there is one molecule per asymmetric unit. The structure was refined by simulated annealing to an R-factor of 15.6% for 15 086 reflections with I >/= 2sigma(I) in the resolution range 5.0-1.9 A. The final crystallographic structure contains 263 amino-acid residues, one sulfate anion in the catalytic cleft and 135 water molecules per asymmetric unit. The folding is very similar to that of the other known class A beta-lactamases. It consists of two domains, the first is formed by a five-stranded beta-sheet covered by three alpha-helices on one face and one alpha-helix on the other, the second domain contains mainly alpha-helices. The catalytic cleft is located at the interface between the two domains. We also report the crystallographic study of the TEM S235A mutant. This mutation of an active-site residue specifically decreases the acylation rate of cephalosporins. This TEM S235A mutant crystallizes under the same conditions as the wild-type protein and its structure was refined at 2.0 A resolution with an R value of 17.6%. The major modification is the appearance of a water molecule near the mutated residue, which is incompatible with the OG 235 present in the wild-type enzyme, and causes very small perturbations in the interaction network in the active site. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailCrystallization and X-ray diffraction study of the Streptomyces K15 penicillin-binding DD-transpeptidase.
Englebert, S.; Charlier, Paulette ULg; Fonze, E. et al

in Journal of Molecular Biology (1994), 241(2), 295-7

The 262 amino acid residue long DD-transpeptidase/penicillin-binding protein of Streptomyces K15 has been crystallized at room temperature by using the hanging drop vapour diffusion technique. The ... [more ▼]

The 262 amino acid residue long DD-transpeptidase/penicillin-binding protein of Streptomyces K15 has been crystallized at room temperature by using the hanging drop vapour diffusion technique. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit cell parameters a = 46.4 A, b = 54.1 A and c = 108.3 A. They contain one protein molecule per asymmetric unit and diffract to about 1.9 A. X-ray data have been collected to 2.0 A from a native crystal. The previously published amino acid sequence of the protein has been corrected at positions 71, 72, 113, 114 and 156. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Peer Reviewed
See detailThe structures and catalytic mechanisms of active-site serine beta-lactamases.
Lamotte, Josette ULg; Knox, J.; Kelly, J. A. et al

in Biotechnology & Genetic Engineering Reviews (1994), 12

Detailed reference viewed: 19 (0 ULg)
Full Text
Peer Reviewed
See detailComparison of the Sequences of Class a Beta-Lactamases and of the Secondary Structure Elements of Penicillin-Recognizing Proteins
Joris, Bernard ULg; Ledent, P.; Dideberg, O. et al

in Antimicrobial Agents and Chemotherapy (1991), 35(11), 2294-2301

The sequences of class A beta-lactamases were compared. Four main groups of enzymes were distinguished: those from the gram-negative organisms and bacilli and two distinct groups of Streptomyces spp. The ... [more ▼]

The sequences of class A beta-lactamases were compared. Four main groups of enzymes were distinguished: those from the gram-negative organisms and bacilli and two distinct groups of Streptomyces spp. The Staphylococcus aureus PC1 enzyme, although somewhat closer to the enzyme from the Bacillus group, did not belong to any of the groups of beta-lactamases. The similarities between the secondary structure elements of these enzymes and those of the class C beta-lactamases and of the Streptomyces sp. strain R61 DD-peptidase were also analyzed and tentatively extended to the class D beta-lactamases. A unified nomenclature of secondary structure elements is proposed for all the penicillin-recognizing enzymes. [less ▲]

Detailed reference viewed: 14 (1 ULg)