References of "Fettweis, Xavier"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRecent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past-temperature reconstructions
Masson-Delmotte, V.; Steen-Larsen, H.; Ortega, P. et al

in Cryosphere (The) (2015), 9

Combined records of snow accumulation rate, δ18O and deuterium excess were produced from several shallow ice cores and snow pits at NEEM (North Greenland Eemian Ice Drilling), covering the period from ... [more ▼]

Combined records of snow accumulation rate, δ18O and deuterium excess were produced from several shallow ice cores and snow pits at NEEM (North Greenland Eemian Ice Drilling), covering the period from 1724 to 2007. They are used to investigate recent climate variability and characterise the isotope–temperature relationship. We find that NEEM records are only weakly affected by inter-annual changes in the North Atlantic Oscillation. Decadal δ18O and accumulation variability is related to North Atlantic sea surface temperature and is enhanced at the beginning of the 19th century. No long-term trend is observed in the accumulation record. By contrast, NEEM δ18O shows multidecadal increasing trends in the late 19th century and since the 1980s. The strongest annual positive δ18O values are recorded at NEEM in 1928 and 2010, while maximum accumulation occurs in 1933. The last decade is the most enriched in δ18O (warmest), while the 11-year periods with the strongest depletion (coldest) are depicted at NEEM in 1815–1825 and 1836–1846, which are also the driest 11-year periods. The NEEM accumulation and δ18O records are strongly correlated with outputs from atmospheric models, nudged to atmospheric reanalyses. Best performance is observed for ERA reanalyses. Gridded temperature reconstructions, instrumental data and model outputs at NEEM are used to estimate the multidecadal accumulation–temperature and δ18O–temperature relationships for the strong warming period in 1979–2007. The accumulation sensitivity to temperature is estimated at 11 ± 2 % °C−1 and the δ18O–temperature slope at 1.1 ± 0.2 ‰ °C−1, about twice as large as previously used to estimate last interglacial temperature change from the bottom part of the NEEM deep ice core. [less ▲]

Detailed reference viewed: 16 (0 ULg)
Full Text
Peer Reviewed
See detailEtude de l'évolution de l'enneigement dans les Hautes Fagnes (Belgique) au cours des cinquante dernières années à l'aide du modèle climatique régional MAR
Wyard, Coraline ULg; Fettweis, Xavier ULg; Erpicum, Michel ULg

in Erpicum, Michel (Ed.) Actes du XXVIIIe colloque annuel de l’Association Internationale de Climatologie : Modélisations et variabilités (2015, July)

The “Modèle Atmosphérique Régionale” MAR is a regional climate model originally developed to study the polar ice sheets. In this study, the MAR model has been adapted to Belgium in order to study the snow ... [more ▼]

The “Modèle Atmosphérique Régionale” MAR is a regional climate model originally developed to study the polar ice sheets. In this study, the MAR model has been adapted to Belgium in order to study the snow cover evolution of the High Fens (east of Belgium), a region covered by snow on average one to two months per year. As validation, we have sucessfully compared MAR based daily snow heights with snowcam-based and/or laser sensor-based observations over the period 2008-2013. Then, the model has been forced by ERA-Interim since 1958 to study the snow cover evolution during the last fifty years at the summit of Belgium. The results show no significant trend despite global warming. [less ▲]

Detailed reference viewed: 25 (4 ULg)
Full Text
Peer Reviewed
See detailHybrid inventory, gravimetry and altimetry (HIGA) mass balance product for Greenland and the Canadian Arctic
Colgan, W.; Abdalati, W.; Citterio, M. et al

in Remote Sensing of Environment (2015), 168

We present a novel inversion algorithm that generates a mass balance field that is simultaneously consistent with independent observations of glacier inventory derived from optical imagery, cryosphere ... [more ▼]

We present a novel inversion algorithm that generates a mass balance field that is simultaneously consistent with independent observations of glacier inventory derived from optical imagery, cryosphere-attributed mass trends derived from satellite gravimetry, and ice surface elevation trends derived from airborne and satellite altimetry. We use this algorithm to assess mass balance across Greenland and the Canadian Arctic over the Sep-2003 to Oct- 2009 period at 26 km resolution. We evaluate local algorithm-inferred mass balance against forty in situ point observations. This evaluation yields an RMSE of 0.15 mWE/a, and highlights a paucity of in situ observations from regions of high dynamic mass loss and peripheral glaciers. We assess mass losses of 212 ± 67 Gt/a to the Greenland ice sheet proper, 38 ± 11 Gt/a to peripheral glaciers in Greenland, and 42 ± 11 Gt/a to glaciers in the Canadian Arctic. These magnitudes of mass loss are dependent on the gravimetry-derived spherical harmonic mass trend we invert. We spatially partition the transient glacier continuity equation by differencing algorithm-inferred mass balance from modeled surface mass balance, in order to solve the horizontal divergence of ice flux as a residual. This residual ice dynamic field infers flux divergence (or submergent flow) in the ice sheet accumu- lation area and at tidewater margins, and flux convergence (or emergent flow) in land-terminating ablation areas, which is consistent with continuum mechanics theory. [less ▲]

Detailed reference viewed: 39 (1 ULg)
Full Text
See detailA forecasting method using a wavelet-based mode decomposition and application to the ENSO index
Deliège, Adrien ULg; Nicolay, Samuel ULg; Fettweis, Xavier ULg

Conference (2015, June)

This work consists of a presentation and applications of a forecasting methodology based on a mode decomposition performed through a continuous wavelet transform. The idea is comparable to the Fourier ... [more ▼]

This work consists of a presentation and applications of a forecasting methodology based on a mode decomposition performed through a continuous wavelet transform. The idea is comparable to the Fourier series decomposition but where the amplitudes of the components are not constant anymore: the signal is written as a sum of periodic components with smooth time-varying amplitudes. This leads to a drastic decrease in the number of terms needed to decompose and rebuild the original signal without loss of precision. Once the decomposition is performed, the components are separately extrapolated, which leads to an extrapolation of the reconstructed signal that stands for a forecast of the original one. The quality of the forecast is assessed through a hindcast procedure (running retroactive probing forecasts) and Pearson correlations and root mean square errors are computed as functions of the lead time. This technique is first illustrated in details with a toy example, then with the El Niño Southern Oscillation (ENSO) time series. This signal consists of monthly-sampled sea surface temperature (SST) anomalies in the Eastern Pacific Ocean and is well-known to be one of the most influential climate patterns on the planet, inducing many consequences worldwide (hurricanes, droughts, flooding,…) and affecting human activities. Therefore, short-term predictions are of first importance in order to plan actions before the occurrence of these phenomena. As far as the ENSO time series is concerned, the wavelet-based mode decomposition leads to four components corresponding to periods of about 20, 31, 43 and 61 months respectively and the reconstruction recovers 97% of the El Niño/La Niña events (anomalous warming/cooling of the SST) of the last 65 years. Also, it turns out that more than 78% of these extreme events can be retrieved up to three years in advance. Finally, a forecast of the ENSO index is issued: the next La Niña event should start early in 2018 and should be followed soon after by a strong El Niño event in the second semester of 2019. [less ▲]

Detailed reference viewed: 25 (2 ULg)
Full Text
Peer Reviewed
See detailFuture climate and surface mass balance of Svalbard glaciers in an RCP8.5 climate scenario: a study with the regional climate model MAR forced by MIROC5
Lang, Charlotte ULg; Fettweis, Xavier ULg; Erpicum, Michel ULg

in Cryosphere (The) (2015), 9

We simulated the 21st century Svalbard SMB with the regional model MAR (RCP8.5 scenario). Melt is projected to increase gently up to 2050 and then dramatically increase, with a larger increase in the ... [more ▼]

We simulated the 21st century Svalbard SMB with the regional model MAR (RCP8.5 scenario). Melt is projected to increase gently up to 2050 and then dramatically increase, with a larger increase in the south of the archipelago. This difference is due to larger ice albedo decrease in the south causing larger increase of absorbed solar radiation. The ablation area is projected to disappear over the entire Svalbard by 2085. The SMB decrease compared to present is projected to contribute 7mm to SLR. [less ▲]

Detailed reference viewed: 41 (15 ULg)
Full Text
Peer Reviewed
See detailGlobal, diffuse and direct irradiances modelling over northwestern Europe using regional climate model MAR : validation and construction of a 30-year climatology
Beaumet, Julien ULg; Doutreloup, Sébastien ULg; Fettweis, Xavier ULg et al

Poster (2015, April 17)

Incoming solar global irradiances are modelled using MAR regional climate model forced by ERA-Interim reanalysis. Global irradiances are decomposed into direct and diffuse using sigmoid model from Ruiz ... [more ▼]

Incoming solar global irradiances are modelled using MAR regional climate model forced by ERA-Interim reanalysis. Global irradiances are decomposed into direct and diffuse using sigmoid model from Ruiz-Arias et al. (2010). Results are validated using data from the European Solar Radiation Atlas for Uccle and Braunschweig weather stations. A 30-year climatology has been built and trends and variability have been analyzed. [less ▲]

Detailed reference viewed: 26 (3 ULg)
Full Text
Peer Reviewed
See detailSnow cover evolution during the last fifty years in the Hautes Fagnes (Belgium) using the regional climate MAR model
Wyard, Coraline ULg; Fettweis, Xavier ULg; Erpicum, Michel ULg

Conference (2015, April 16)

The MAR model is a regional climate model originally developped for the polar regions to study the surface mass balance. In this study, the MAR model has been adapted to Belgium in order to study the snow ... [more ▼]

The MAR model is a regional climate model originally developped for the polar regions to study the surface mass balance. In this study, the MAR model has been adapted to Belgium in order to study the snow cover evolution of the Hautes Fagnes (south-east of Belgium), a region covered by snow one to two months per year. As validation, we have sucessfully compared MAR based daily snow heights with snowcam-based observations. Then, the model has been forced by ERA-Interim since 1958 to study the snow cover evolution during the last fifty years at the summit of Belgium. The results show non-significant trend. [less ▲]

Detailed reference viewed: 42 (13 ULg)
Full Text
Peer Reviewed
See detailFuture projections of the Greenland ice sheet mass balance using the regional climate MAR model coupled with the GRISLI ice sheet model
Wyard, Coraline ULg; Fettweis, Xavier ULg; Ritz, Catherine

Poster (2015, April 14)

During the two last decades, the Greenland ice sheet (GrIS) contribution to the global mean sea level rise has significantly increased. But, difficulties remain to assess GrIS future contribution because ... [more ▼]

During the two last decades, the Greenland ice sheet (GrIS) contribution to the global mean sea level rise has significantly increased. But, difficulties remain to assess GrIS future contribution because of large uncertainties linked to the feedback between the surface mass balance (SMB) and GrIS topography changes. The regional climate MAR model has been coupled with the GRISLI ice sheet model, in order to account of this feedback in the future projections. The aim of this study is to assess the pertinence of the MAR-GRISLI coupling which requires long computation time. In order to identify GRISLI sensitivity to MAR forcing, GRISLI has been forced with various non-coupled (i.e. using a fixed topography), coupled and modified non-coupled MAR outputs. To adapt the non-coupled MAR outputs to the GRISLI topography changes, we use an interpolation technique based on SMB vs elevation vertical gradient. These experiences evaluate the performances/limits of this interpolation technique used to avoid a RCM-ice sheet model coupling. [less ▲]

Detailed reference viewed: 26 (4 ULg)
Full Text
See detailEGU2015 - ENSO forecast using a wavelet-based mode decomposition
Deliège, Adrien ULg; Nicolay, Samuel ULg; Fettweis, Xavier ULg

Conference (2015, April 13)

The aim of this work is to introduce a new method for forecasting major El Niño/ La Niña events with the use of a wavelet-based mode decomposition. These major events are related to sea surface ... [more ▼]

The aim of this work is to introduce a new method for forecasting major El Niño/ La Niña events with the use of a wavelet-based mode decomposition. These major events are related to sea surface temperature anomalies in the tropical Pacific Ocean: anomalous warmings are known as El Niño events, while excessive coolings are referred as La Niña episodes. These climatological phenomena are of primary importance since they are involved in many teleconnections ; predicting them long before they occur is therefore a crucial concern. First, we perform a wavelet transform (WT) of the monthly sampled El Niño Southern Oscillation 3.4 index (from 1950 to present) and compute the associated scale spectrum, which can be seen as the energy carried in the WT as a function of the scale. It can be observed that the spectrum reaches five peaks, corresponding to time scales of about 7, 20, 31, 43 and 61 months respectively. Therefore, the Niño 3.4 signal can be decomposed into five dominant oscillating components with time-varying amplitudes, these latter being given by the modulus of the WT at the associated pseudo-periods. The reconstruction of the index based on these five components is accurate since more than 93% of the El Niño/ La Niña events of the last 60 years are recovered and no major event is erroneously predicted. Then, the components are smoothly extrapolated using polynomials and added together, giving so several years forecasts of the Niño 3.4 index. In order to increase the reliability of the forecasts, we perform several months hindcasts (i.e. retroactive probing forecasts) which can be validated with the existing data. It turns out that most of the major events can be accurately predicted up to three years in advance, which makes our methodology competitive for such forecasts. Finally, we discuss the El Niño conditions currently undergone and give indications about the next La Niña event. [less ▲]

Detailed reference viewed: 41 (8 ULg)
Full Text
Peer Reviewed
See detailGreenland high-elevation mass balance: inference and implication of reference period (1961–90) imbalance
Colgan, W.; Box, J.; Andersen, M. et al

in Annals of Glaciology (2015), 56(70), 105117

We revisit the input–output mass budget of the high-elevation region of the Greenland ice sheet evaluated by the Program for Arctic Regional Climate Assessment (PARCA). Our revised reference period ... [more ▼]

We revisit the input–output mass budget of the high-elevation region of the Greenland ice sheet evaluated by the Program for Arctic Regional Climate Assessment (PARCA). Our revised reference period (1961–90) mass balance of 54 48 Gt a–1 is substantially greater than the 0 21 Gt a–1 assessed by PARCA, but consistent with a recent, fully independent, input–output estimate of high-elevation mass balance (41 61 Gt a–1). Together these estimates infer a reference period high-elevation specific mass balance of 4.8 5.4 cm w.e. a–1. The probability density function (PDF) associated with this combined input–output estimate infers an 81% likelihood of high-elevation specific mass balance being positive (>0 cm w.e. a–1) during the reference period, and a 70% likelihood that specific balance was >2 cm w.e. a–1. Given that reference period accumulation is characteristic of centurial and millennial means, and that in situ mass-balance observations exhibit a dependence on surface slope rather than surface mass balance, we suggest that millennial-scale ice dynamics are the primary driver of subtle reference period high-elevation mass gain. Failure to acknowledge subtle reference period dynamic mass gain can result in underestimating recent dynamic mass loss by 17%, and recent total Greenland mass loss by 7%. [less ▲]

Detailed reference viewed: 67 (0 ULg)
Full Text
Peer Reviewed
See detailThe summer 2012 Greenland heat wave: in situ and remote sensing observations of water vapour isotopic composition during an atmospheric river event†
Bonne, JL; Steen-Larsen, HC; Risi, C. et al

in Journal of Geophysical Research. Atmospheres (2015)

During July 7-12, 2012, extreme moist and warm conditions occurred over Greenland, leading to widespread surface melt. To investigate the physical processes during the atmospheric moisture transport of ... [more ▼]

During July 7-12, 2012, extreme moist and warm conditions occurred over Greenland, leading to widespread surface melt. To investigate the physical processes during the atmospheric moisture transport of this event, we study the water vapour isotopic composition using surface in situ observations in Bermuda Island, South Greenland coast (Ivittuut) and Northwest Greenland ice sheet (NEEM), as well as remote sensing observations (IASI instrument on-board MetOp-A), depicting propagation of similar surface and mid-tropospheric humidity and δD signals. Simulations using Lagrangian moisture source diagnostic and water tagging in a regional model showed that Greenland was affected by an atmospheric river transporting moisture from the western subtropical North Atlantic Ocean, which is coherent with observations of snow pit impurities deposited at NEEM. At Ivittuut, surface air temperature, humidity and δD increases are observed. At NEEM, similar temperature increase is associated with a large and long-lasting ~100 δD enrichment and ~15 deuterium excess decrease, thereby reaching Ivittuut level. We assess the simulation of this event in two isotope-enabled atmospheric general circulation models (LMDz-iso and ECHAM5-wiso). LMDz-iso correctly captures the timing of propagation for this event identified in IASI data but depict too gradual variations when compared to surface data. Both models reproduce the surface meteorological and isotopic values during the event but underestimate the background deuterium excess at NEEM. Cloud liquid water content parametrization in LMDz-iso poorly impacts the vapour isotopic composition. Our data demonstrate that during this atmospheric river event the deuterium excess signal is conserved from the moisture source to Northwest Greenland. [less ▲]

Detailed reference viewed: 29 (1 ULg)
Full Text
Peer Reviewed
See detailRecent summer Arctic atmospheric circulation anomalies in a historical perspective
Belleflamme, Alexandre ULg; Fettweis, Xavier ULg; Erpicum, Michel ULg

in Cryosphere (The) (2015), 9

A significant increase in the summertime occurrence of a high pressure area over the Beaufort Sea, the Canadian Arctic Archipelago, and Greenland has been observed since the beginning of the 2000s, and ... [more ▼]

A significant increase in the summertime occurrence of a high pressure area over the Beaufort Sea, the Canadian Arctic Archipelago, and Greenland has been observed since the beginning of the 2000s, and particularly between 2007 and 2012. These circulation anomalies are likely partly responsible for the enhanced Greenland ice sheet melt as well as the Arctic sea ice loss observed since 2007. Therefore, it is interesting to analyse whether similar conditions might have happened since the late 19th century over the Arctic region. We have used an atmospheric circulation type classification based on daily mean sea level pressure and 500 hPa geopotential height data from five reanalysis data sets (ERA-Interim, ERA-40, NCEP/NCAR, ERA-20C, and 20CRv2) to put the recent circulation anomalies in perspective with the atmospheric circulation variability since 1871. We found that circulation conditions similar to 2007–2012 have occurred in the past, despite a higher uncertainty of the reconstructed circulation before 1940. For example, only ERA-20C shows circulation anomalies that could explain the 1920–1930 summertime Greenland warming, in contrast to 20CRv2. While the recent anomalies exceed by a factor of 2 the interannual variability of the atmospheric circulation of the Arctic region, their origin (natural variability or global warming) remains debatable. [less ▲]

Detailed reference viewed: 85 (11 ULg)
Full Text
Peer Reviewed
See detailStable climate and surface mass balance in Svalbard over 1979–2013 despite the Arctic warming
Lang, Charlotte ULg; Fettweis, Xavier ULg; Erpicum, Michel ULg

in Cryosphere (The) (2015), 9

With the help of the regional climate model MAR (Modèle Atmosphérique Régional) forced by the ERA-Interim reanalysis (MARERA) and the MIROC5 (Model for Interdisciplinary Research on Climate) global model ... [more ▼]

With the help of the regional climate model MAR (Modèle Atmosphérique Régional) forced by the ERA-Interim reanalysis (MARERA) and the MIROC5 (Model for Interdisciplinary Research on Climate) global model (MARMIROC5) from the CMIP5 (Coupled Model Intercomparison Project) database, we have modelled the climate and surface mass balance of Svalbard at a 10 km resolution over 1979–2013. The integrated total surface mass balance (SMB) over Svalbard modelled by MARERA is negative (−1.6 Gt yr−1) with a large interannual variability (7.1 Gt) but, unlike over Greenland, there has been no acceleration of the surface melt over the past 35 years because of the recent change in atmospheric circulation bringing northwesterly flows in summer over Svalbard, contrasting the recent observed Arctic warming. However, in 2013, the atmospheric circulation changed to a south–southwesterly flow over Svalbard causing record melt, SMB (−20.4 Gt yr−1) and summer temperature. MIROC5 is significantly colder than ERA-Interim over 1980–2005 but MARMIROC5 is able to improve the near-surface MIROC5 results by simulating not significant SMB differences with MARERA over 1980–2005. On the other hand, MIROC5 does not represent the recent atmospheric circulation shift in summer and induces in MARMIROC5 a significant trend of decreasing SMB (−0.6 Gt yr−2) over 1980–2005. [less ▲]

Detailed reference viewed: 40 (12 ULg)
Full Text
Peer Reviewed
See detailSupraglacial lakes on the Greenland ice sheet advance inland under warming climate
Leeson, A.; Shepherd, A.; Briggs, K. et al

in Nature Climate Change (2015), 5

Supraglacial lakes (SGLs) form annually on the Greenland ice sheet and, when they drain, their discharge enhances ice-sheet flow by lubricating the base and potentially by warming the ice. Today, SGLs ... [more ▼]

Supraglacial lakes (SGLs) form annually on the Greenland ice sheet and, when they drain, their discharge enhances ice-sheet flow by lubricating the base and potentially by warming the ice. Today, SGLs tend to form within the ablation zone, where enhanced lubrication is offset by efficient subglacial drainage. However, it is not clear what impact a warming climate will have on this arrangement. Here, we use an SGL initiation and growth model to show that lakes form at higher altitudes as temperatures rise, consistent with satellite observations. Our simulations show that in southwest Greenland, SGLs spread 103 and 110 km further inland by the year 2060 under moderate (RCP 4.5) and extreme (RCP 8.5) climate change scenarios, respectively, leading to an estimated 48–53% increase in the area over which they are distributed across the ice sheet as a whole. Up to half of these new lakes may be large enough to drain, potentially delivering water and heat to the ice-sheet base in regions where subglacial drainage is inefficient. In such places, ice flow responds positively to increases in surface water delivered to the bed through enhanced basal lubrication and warming of the ice, and so the inland advance of SGLs should be considered in projections of ice-sheet change. [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
Peer Reviewed
See detailBasin-scale partitioning of Greenland ice sheet mass balance components (2007–2011)
Andersen, M.L.; Stenseng, L.; Skourup, H. et al

in Earth and Planetary Science Letters (2015), 409

The current deficit in Greenland ice sheet mass balance is due to both a decrease in surface mass balance (SMB ) input and an increase in ice discharge (D ) output. While SMB processes are beginning to be ... [more ▼]

The current deficit in Greenland ice sheet mass balance is due to both a decrease in surface mass balance (SMB ) input and an increase in ice discharge (D ) output. While SMB processes are beginning to be well captured by observationally-constrained climate modeling, insight into D is relatively limited. We use InSAR-derived velocities, in combination with ice thickness observations, to quantify the mass flux (F ) across a flux perimeter around the ice sheet at ∼1700 m elevation. To quantify D , we correct F for SMB , as well as changes in volume due to ice dynamics, in the area downstream of the gate. Using a 1961–1990 reference climatology SMB field from the MAR regional climate model, we quantify ice sheet mass balance within eighteen basins. We find a 2007–2011 mean D of View the MathML source. We find a 2007–2011 mean total mass balance of View the MathML source, which is equal to a 0.73 mm yr−1 global sea level rise contribution. This mass loss is dominated by SMB, which accounts for 61% of mass loss in the basins where partitioning is possible. [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
Peer Reviewed
See detailEvaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance
Agosta, Cécile ULg; Fettweis, Xavier ULg; Datta, Rajashree

in Cryosphere Discussions (The) (2015), 9(3), 3113--3136

The Antarctic surface mass balance (SMB) cannot be reliably deduced from global climate models (GCMs), both because their spatial resolution is insufficient and because their physics are not adapted for ... [more ▼]

The Antarctic surface mass balance (SMB) cannot be reliably deduced from global climate models (GCMs), both because their spatial resolution is insufficient and because their physics are not adapted for cold and snow-covered regions. By contrast, regional climate models (RCMs) adapted for polar regions can physically and dynamically downscale surface mass balance components over the ice-sheet using large scale forcing at their boundaries. Polar-oriented RCMs require appropriate GCM fields for forcing because the response of the cryosphere to a warming climate is dependent on its initial state and is not linear with respect to temperature increase. In this context, we evaluate current climate in 41 climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) dataset over Antarctica by focusing on forcing fields which may have the greatest impact on SMB components simulated by RCMs. Our inter-comparison includes 5 reanalyses, among which ERA-Interim reanalysis is chosen as a reference over 1979–2014. Model efficiency is assessed taking into account the multi-decadal variability of the fields over the 1850–1980 period. We show that less than 10 CMIP5 models show reasonable biases compared to ERA-Interim, among which ACCESS1-3 seems to be the most pertinent choice for regional climate modeling over Antarctica, followed by CMCC-CM, MIROC-ESM/MIROC-ESM-CHEM and NorESM1-M. Finally, climate change over the Southern Ocean is much more dependent on the initial state of winter sea-ice extent and on the local feedback between air temperature increase and winter sea-ice extent decrease than on the global warming signal. [less ▲]

Detailed reference viewed: 29 (2 ULg)
Full Text
Peer Reviewed
See detailRapid dynamic activation of a marine-based Arctic ice cap
McMillan, M; Shepherd, A; Gourmelen, N et al

in Geophysical Research Letters (2014), 41(24), 89028909

We use satellite observations to document rapid acceleration and ice loss from a formerly slow-flowing, marine-based sector of Austfonna, the largest ice cap in the Eurasian Arctic. During the past two ... [more ▼]

We use satellite observations to document rapid acceleration and ice loss from a formerly slow-flowing, marine-based sector of Austfonna, the largest ice cap in the Eurasian Arctic. During the past two decades, the sector ice discharge has increased 45-fold, the velocity regime has switched from predominantly slow (~ 101 m/yr) to fast (~ 103 m/yr) flow, and rates of ice thinning have exceeded 25 m/yr. At the time of widespread dynamic activation, parts of the terminus may have been near floatation. Subsequently, the imbalance has propagated 50 km inland to within 8 km of the ice cap summit. Our observations demonstrate the ability of slow-flowing ice to mobilize and quickly transmit the dynamic imbalance inland; a process that we show has initiated rapid ice loss to the ocean and redistribution of ice mass to locations more susceptible to melt, yet which remains poorly understood. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailAssessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013)
Alexander, P.; Tedesco, M.; Fettweis, Xavier ULg et al

in Cryosphere (The) (2014), 8

Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the role of surface albedo in modulating the amount of absorbed solar radiation and meltwater ... [more ▼]

Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the role of surface albedo in modulating the amount of absorbed solar radiation and meltwater production. In this study, we assess the spatio-temporal variability of GrIS albedo during June, July, and August (JJA) for the period 2000–2013. We use two remote sensing products derived from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as outputs from the Modèle Atmosphérique Régionale (MAR) regional climate model (RCM) and data from in situ automatic weather stations. Our results point to an overall consistency in spatio-temporal variability between remote sensing and RCM albedo, but reveal a difference in mean albedo of up to ~0.08 between the two remote sensing products north of 70° N. At low elevations, albedo values simulated by the RCM are positively biased with respect to remote sensing products by up to ~0.1 and exhibit low variability compared with observations. We infer that these differences are the result of a positive bias in simulated bare ice albedo. MODIS albedo, RCM outputs, and in situ observations consistently indicate a decrease in albedo of −0.03 to −0.06 per decade over the period 2003–2013 for the GrIS ablation area. Nevertheless, satellite products show a decline in JJA albedo of −0.03 to −0.04 per decade for regions within the accumulation area that is not confirmed by either the model or in situ observations. These findings appear to contradict a previous study that found an agreement between in situ and MODIS trends for individual months. The results indicate a need for further evaluation of high elevation albedo trends, a reconciliation of MODIS mean albedo at high latitudes, and the importance of accurately simulating bare ice albedo in RCMs. [less ▲]

Detailed reference viewed: 37 (1 ULg)
Full Text
See detailENSO forecast using a wavelet-based mode decomposition
Deliège, Adrien ULg; Nicolay, Samuel ULg; Fettweis, Xavier ULg

Poster (2014, December)

We introduce a new method for forecasting major El Niño/ La Niña events based on a wavelet mode decomposition. This methodology allows us to approximate the ENSO time series with a superposition of three ... [more ▼]

We introduce a new method for forecasting major El Niño/ La Niña events based on a wavelet mode decomposition. This methodology allows us to approximate the ENSO time series with a superposition of three periodic signals corresponding to periods of about 31, 43 and 61 months respectively with time-varying amplitudes. This pseudo-periodic approximation is then extrapolated to give forecasts. While this last one only resolves the large variations in the ENSO time series, three years hindcast as retroactive prediction allows to recover most of the El Niño/ La Niña events of the last 60 years. [less ▲]

Detailed reference viewed: 28 (7 ULg)
Full Text
Peer Reviewed
See detailSensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR
Noel, Brice; Fettweis, Xavier ULg; van de Berg, W.J. et al

in Cryosphere (The) (2014), 8

During recent summers (2007–2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North ... [more ▼]

During recent summers (2007–2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North Atlantic Oscillation (NAO), favoring warmer atmospheric conditions than normal over the GrIS. Simultaneously, large anomalies in sea ice cover (SIC) and sea surface temperature (SST) were observed in the North Atlantic, suggesting a possible connection. To assess the direct impact of 2007–2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR forced by ERA-Interim. These simulations suggest that perturbations in SST and SIC in the seas surrounding Greenland do not considerably impact GrIS SMB, as a result of the katabatic wind blocking effect. These offshore-directed winds prevent oceanic near-surface air, influenced by SIC and SST anomalies, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds cease. A topic for further investigation is how anomalies in SIC and SST might have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, hence favoring more frequent warm air advection towards the GrIS. [less ▲]

Detailed reference viewed: 92 (2 ULg)