References of "Fettweis, Xavier"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAssessing spatiotemporal variability and trends (2000-2013) of modeled and measured Greenland Ice Sheet albedo
Alexander, P.; Tedesco, M.; Fettweis, Xavier ULg et al

in Cryosphere Discussions (The) (2014), 8

Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the crucial role of surface albedo in modulating the amount of absorbed solar radiation and ... [more ▼]

Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the crucial role of surface albedo in modulating the amount of absorbed solar radiation and meltwater production. In this study, we assess the spatio-temporal variability of GrIS albedo (during June, July, and August) for the period 2000–2013. We use two remote sensing products derived from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as outputs from the Modèle Atmosphérique Régionale (MAR) regional climate model (RCM) and data from in situ automatic weather stations. Our results point to an overall consistency in spatiotemporal variability between remote sensing and RCM albedo, but reveal a difference in mean albedo of up to ~0.08 between the two remote sensing products north of 70° N. At low elevations, albedo values simulated by the RCM are positively biased with respect to remote sensing products and in situ measurements by up to ~0.1 and exhibit low variability compared with observations. We infer that these differences are the result of a positive bias in simulated bare-ice albedo. MODIS albedo, RCM outputs and in situ observations consistently point to a~decrease in albedo of −0.03 to −0.06 per decade over the period 2003–2013 for the GrIS ablation zone (where there is a net loss of mass at the GrIS surface). Nevertheless, satellite products show a~decline in albedo of −0.03 to −0.04 per decade for regions within the accumulation zone (where there is a net gain of mass at the surface) that is not confirmed by either the model or in situ observations. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailMICROPHYSIQUE DES NUAGES ET RAYONNEMENT SOLAIRE : COMPARAISON DES MESURES IN SITU AU MONT RIGI EN HAUTE BELGIQUE ET DES DONNÉES CLOUD PHYSICAL PROPERTIES (CPP) OBTENUES À PARTIR DES IMAGES METEOSAT-9
Beaumet, Julien ULg; Clerbaux, Nicolas; Cornet, Yves ULg et al

in Camberlin, Pierre; Richard, Yves (Eds.) Actes du XXVIIe Colloque de l'Association Internationale de Climatologie : CLIMAT : SYSTÈME & INTERACTIONS (2014, July 02)

Le rayonnement solaire global mesuré au mont Rigi a été comparé à l'épaisseur optique des nuages (COT) estimée à l'aide des données SEVIRI. Une relation logarithmique avec un coefficient de détermination ... [more ▼]

Le rayonnement solaire global mesuré au mont Rigi a été comparé à l'épaisseur optique des nuages (COT) estimée à l'aide des données SEVIRI. Une relation logarithmique avec un coefficient de détermination d'environ 0,5 a été trouvée. Ce résultat plutôt faible peut en grande partie s'expliquer par un nombre limité de cas où subsistent des erreurs de positionnement ou par des interactions plus complexes entre nébulosité et rayonnement. De plus, l'incertitude sur l'estimation de l'épaisseur optique des nuages à l'aide des données SEVIRI pour les nuages optiquement plus épais n'est pas négligeable. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailComparaison entre le profil vertical de la vitesse du vent observé dans les basses couches de la troposphère et celui simulé par le modèle WRF en Belgique
Doutreloup, Sébastien ULg; Fettweis, Xavier ULg; Beaumet, Julien ULg et al

in Camberlin, Pierre; Richard, Yves (Eds.) Actes du XXVIIe Colloque de l'Association Internationale de Climatologie : CLIMAT : SYSTÈME & INTERACTIONS (2014, July 02)

In the framework of FLEXIPAC project funded by the "RELIABLE" program of Walloon Region (Belgium), the Laboratory of Climatology Topoclimatology (LCT) of the University of Liège (Belgium) aims to adjust ... [more ▼]

In the framework of FLEXIPAC project funded by the "RELIABLE" program of Walloon Region (Belgium), the Laboratory of Climatology Topoclimatology (LCT) of the University of Liège (Belgium) aims to adjust the WRF regional model (v.3.4.) forced by the ERA-Interim reanalysis for Belgium. Our analysis shows that wind speeds at 100m simulated by WRF are systematically overestimated compared to wind speeds extracted from wind productions of two wind farms. In order to solve this problem, four ways are considered in this contribution. The first way is to compare the WRF model with the reanalysis data. The second way is to test the influence of the spatial resolution by running WRF with a finer resolution. The third way is to smooth WRF outputs, where in order to analyze the variability created by the model. And finally, the fourth way is to compare the WRF model with the MAR (v3.3.) regional model. This last way seems to confirm that the MAR model better simulates wind speeds at 10m and at 100m than the WRF model. [less ▲]

Detailed reference viewed: 25 (3 ULg)
Full Text
See detailSolar irradiance modelling over Belgium using WRF-ARW : A sensitivity analysis of Mellor-Yamada-Nakanishi-Niino (BYNN) boundary layer scheme parameters
Beaumet, Julien ULg; Doutreloup, Sébastien ULg; Fettweis, Xavier ULg et al

Conference (2014, June 06)

Global solar irradiances at ground level are modelled over Belgium using latest version of WRF-ARW regional climate model (RCM). The model set-up used has a resolution of 5 kilometres. The boundary layer ... [more ▼]

Global solar irradiances at ground level are modelled over Belgium using latest version of WRF-ARW regional climate model (RCM). The model set-up used has a resolution of 5 kilometres. The boundary layer scheme chosen is the Mellor-Yamada-Nakanishi-Niino (MYNN) 2.5 scheme with the Turbulent Kinetic Energy (TKE) closure proposed by Canuto et al., (2008) and Kitamura (2010). In this scheme, the modification of some parameters allows to change the determinant mixing length (surface layer, planet boundary layer, top of boundary layer/entrainment) which then modifies heat and moistures fluxes produced by turbulent mixing. Such modifications have significant influences on modelled cloudiness and therefore on modelled global solar irradiance incoming at the surface. The present study proposes a sensitivity analysis of the different parameters that influence the mixing length ('alp1' to 'alp5') and the TKE diffusion ('Sqfac') in order to find the most suitable constant values of these parameters for the modelling of cloudiness over Belgium. Results of different simulations are compared with global solar irradiance measurements performed by the Centre Spatial de Liège at Sart-Tilman in 2013 and 2014. Firsts results show that the dry bias frequently found when using WRF-ARW with standard set-ups can be greatly reduced thanks to an increased modelled cloudiness. The quantitative and qualitative effects of these modifications over cloudiness are also analysed by displaying 2D representation of modelled clouds over Sart-Tilman and confronting them with on-site observations. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailComparison between wind speed observed at 100m height and wind speeds simulated by the WRF and MAR models
Doutreloup, Sébastien ULg; Fettweis, Xavier ULg; Erpicum, Michel ULg et al

Poster (2014, June 06)

In the context of FLEXIPAC project funded by "RELIABLE" program of Walloon Region (Belgium), the Laboratory of Climatology and Topoclimatology (LCT) of the University of Liège (Belgium) aims to adjust the ... [more ▼]

In the context of FLEXIPAC project funded by "RELIABLE" program of Walloon Region (Belgium), the Laboratory of Climatology and Topoclimatology (LCT) of the University of Liège (Belgium) aims to adjust the WRF regional model (v.3.4.) forced by ERA-Interim model. Our analysis shows that wind speeds at 100m height simulated by WRF are systematically overestimated compared to wind speeds extracted from wind productions of two wind farms. In order to identify this problem, four comparisons were performed in this contribution. Firstly, we compare WRF model with reanalysis based forcing model. Secondly, we compare two WRF simulations, where one of them has a more precise spatial resolution. Thirdly, we smooth WRF outputs in time (6-hr running mean) in order to study the accuracy of the 30-min variability generated by WRF model. Finally, we comp compare the WRF model with the MAR (v3.3.) regional model using the same forcing at its lateral boundaries. This last one seems to suggest that the MAR model better simulates wind speeds at 10m and at 100m than WRF model and then that wind speed underestimation by WRF is well linked to the WRF physics itself. [less ▲]

Detailed reference viewed: 47 (5 ULg)
Full Text
Peer Reviewed
See detailÉtude des changements de circulation au-dessus de l'océan Austral en été
Belleflamme, Alexandre ULg; Fettweis, Xavier ULg; Erpicum, Michel ULg

in Camberlin, Pierre; Richard, Yves (Eds.) Actes du XXVIIème colloque de l'Association de Climatologie - Climat : système & interactions (2014, June)

Over the five last decades, the reanalyses (ERA and NCEP/NCAR) show a strengthening of the pressure gradient between the southern hemisphere subtropical anticyclone belt and the southern circumpolar lows ... [more ▼]

Over the five last decades, the reanalyses (ERA and NCEP/NCAR) show a strengthening of the pressure gradient between the southern hemisphere subtropical anticyclone belt and the southern circumpolar lows during summer. With the help of an automatic circulation type classification, we show that the strengthening of the pressure gradient is generalised to all circulation types and, paradoxically, it does not cause circulation changes. It is probably implied by the strengthening of the temperature gradient between the tropics and the South Pole, without consequences on the general circulation. Our classification also allows a successful comparison between the two reanalyses in a region where the observation data are rare. [less ▲]

Detailed reference viewed: 15 (2 ULg)
Full Text
Peer Reviewed
See detailEstimating Antarctic ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR
Agosta, Cécile ULg; Fettweis, Xavier ULg; Gallée, Hubert

Conference (2014, May 26)

The Antarctic ice-sheet surface mass balance (SMB) is a significant contribution to sea level changes which may mitigate the rise in sea level in a warmer climate, but this term is still poorly known. The ... [more ▼]

The Antarctic ice-sheet surface mass balance (SMB) is a significant contribution to sea level changes which may mitigate the rise in sea level in a warmer climate, but this term is still poorly known. The Antarctic SMB cannot be directly deduced from global climate models (GCMs) because of their too low resolution (~100 km) and their unadapted physic over cold and snow-covered areas. That is why the use of a regional climate models (RCM) specifically developed for polar regions is particularly relevant. We present here new estimations of the Antarctic SMB changes for the 20th and the 21st century at 40 km of resolution with the MAR (Modèle Atmosphérique Régional) RCM. Recent studies showed that large scale forcing from GCMs was the main source of uncertainty for RCM-deduced SMB, thus we first present a carefully analysis of the CMIP5 GCMs (used in the AR5 IPCC report) compared to the ERA-Interim reanalysis over the Antarctic region, from which we could select the less biased large scale forcing for MAR. We thus show the Antarctic SMB evolution as modeled with MAR forced by ACCESS1-3 for RCP 4.5 and 8.5 greenhouse gaz scenarios. We evaluate our outputs by comparing MAR forced by ACCESS1-3 and ERA-Interim for the 1980-2000 period to more than 2700 quality-controlled observations and to surface meteorological data from the READER database. We then give SMB changes estimations for the 21st century together with an analysis of uncertainties coming from the MAR model, the GCM forcing and the greenhouse gaz scenarios. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailIncreasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960-2012)
Van As, D; Andersen, ML; Petersen, D et al

in Journal of Glaciology (2014), 60(220), 314-322

We assess the runoff and surface mass balance (SMB) of the Greenland ice sheet in the Nuuk region (southwest) using output of two regional climate models (RCMs) evaluated by observations. The region ... [more ▼]

We assess the runoff and surface mass balance (SMB) of the Greenland ice sheet in the Nuuk region (southwest) using output of two regional climate models (RCMs) evaluated by observations. The region encompasses six glaciers that drain into Godtha ̊bsfjord. RCM data (1960–2012) are resampled to a high spatial resolution to include the narrow (relative to the native grid spacing) glacier trunks in the ice mask. Comparing RCM gridded results with automatic weather station (AWS) point measurements reveals that locally models can underestimate ablation and overestimate accumulation by up to tens of per cent. However, comparison with lake discharge indicates that modelled regional runoff totals are more accurate. Model results show that melt and runoff in the Nuuk region have doubled over the past two decades. Regional SMB attained negative values in recent high-melt years. Taking into account frontal ablation of the marine-terminating glaciers, the region lost 10–20 km3 w.e. a–1 in 2010–12. If 2010 melting prevails during the remainder of this century, a low-end estimate of sea-level rise of 5 mm is expected by 2100 from this relatively small section (2.6%) of the ice sheet alone. [less ▲]

Detailed reference viewed: 44 (0 ULg)
Full Text
See detailSmall impact of surrounding oceanic conditions on 2007–2012 Greenland Ice Sheet surface mass balance
Noel, Brice; Fettweis, Xavier ULg; van de Berg, W.J. et al

in Cryosphere Discussions (The) (2014), 8

During recent summers (2007–2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North ... [more ▼]

During recent summers (2007–2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North-Atlantic Oscillation (NAO), favouring warmer than normal conditions over the GrIS. In addition, it has been suggested that significant anomalies in sea ice cover (SIC) and sea surface temperature (SST) may partially explain recent anomalous GrIS surface melt. To assess the impact of 2007–2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR. These simulations suggest that changes in SST and SIC in the seas surrounding Greenland do not significantly impact GrIS SMB, due to the katabatic winds blocking effect. These winds are strong enough to prevent oceanic near-surface air, influenced by SIC and SST variability, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds are weaker. However, anomalies in SIC and SST could have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, favouring more frequent warm air advection to the GrIS. [less ▲]

Detailed reference viewed: 39 (2 ULg)
Full Text
Peer Reviewed
See detailCoastal flood damage and adaptation costs under 21st century sea-level rise
Hinkel, J.; Lincke, D.; Vafeidis, A. T. et al

in Proceedings of the National Academy of Sciences of the United States of America (2014), online

Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data ... [more ▼]

Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea-level rise. Uncertainty in global mean and regional sea level was derived from four different climate models from the Coupled Model Intercomparison Project Phase 5, each combined with three land-ice scenarios based on the published range of contributions from ice sheets and glaciers. Without adaptation, 0.2–4.6% of global population is expected to be flooded annually in 2100 under 25–123 cm of global mean sea-level rise, with expected annual losses of 0.3–9.3% of global gross domestic product. Damages of this magnitude are very unlikely to be tolerated by society and adaptation will be widespread. The global costs of protecting the coast with dikes are significant with annual investment and maintenance costs of US$ 12–71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply. Flood damages by the end of this century are much more sensitive to the applied protection strategy than to variations in climate and socioeconomic scenarios as well as in physical data sources (topography and climate model). Our results emphasize the central role of long-term coastal adaptation strategies. These should also take into account that protecting large parts of the developed coast increases the risk of catastrophic consequences in the case of defense failure. [less ▲]

Detailed reference viewed: 75 (10 ULg)
Full Text
Peer Reviewed
See detailEffect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet
Edwards, T.; Fettweis, Xavier ULg; Gagliardini, O. et al

in Cryosphere (The) (2014), 8

We apply a new parameterisation of the Greenland ice sheet (GrIS) feedback between surface mass balance (SMB: the sum of surface accumulation and surface ablation) and surface elevation in the MAR ... [more ▼]

We apply a new parameterisation of the Greenland ice sheet (GrIS) feedback between surface mass balance (SMB: the sum of surface accumulation and surface ablation) and surface elevation in the MAR regional climate model (Edwards et al., 2014) to projections of future climate change using five ice sheet models (ISMs). The MAR (Modèle Atmosphérique Régional: Fettweis, 2007) climate projections are for 2000–2199, forced by the ECHAM5 and HadCM3 global climate models (GCMs) under the SRES A1B emissions scenario. The additional sea level contribution due to the SMB–elevation feedback averaged over five ISM projections for ECHAM5 and three for HadCM3 is 4.3% (best estimate; 95% credibility interval 1.8–6.9%) at 2100, and 9.6% (best estimate; 95% credibility interval 3.6–16.0%) at 2200. In all results the elevation feedback is significantly positive, amplifying the GrIS sea level contribution relative to the MAR projections in which the ice sheet topography is fixed: the lower bounds of our 95% credibility intervals (CIs) for sea level contributions are larger than the "no feedback" case for all ISMs and GCMs. Our method is novel in sea level projections because we propagate three types of modelling uncertainty – GCM and ISM structural uncertainties, and elevation feedback parameterisation uncertainty – along the causal chain, from SRES scenario to sea level, within a coherent experimental design and statistical framework. The relative contributions to uncertainty depend on the timescale of interest. At 2100, the GCM uncertainty is largest, but by 2200 both the ISM and parameterisation uncertainties are larger. We also perform a perturbed parameter ensemble with one ISM to estimate the shape of the projected sea level probability distribution; our results indicate that the probability density is slightly skewed towards higher sea level contributions. [less ▲]

Detailed reference viewed: 84 (5 ULg)
Full Text
Peer Reviewed
See detailProbabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet
Edwards, T.; Fettweis, Xavier ULg; Gagliardini, O. et al

in Cryosphere (The) (2014), 8

We present a new parameterisation that relates surface mass balance (SMB: the sum of surface accumulation and surface ablation) to changes in surface elevation of the Greenland ice sheet (GrIS) for the ... [more ▼]

We present a new parameterisation that relates surface mass balance (SMB: the sum of surface accumulation and surface ablation) to changes in surface elevation of the Greenland ice sheet (GrIS) for the MAR (Modèle Atmosphérique Régional: Fettweis, 2007) regional climate model. The motivation is to dynamically adjust SMB as the GrIS evolves, allowing us to force ice sheet models with SMB simulated by MAR while incorporating the SMB–elevation feedback, without the substantial technical challenges of coupling ice sheet and climate models. This also allows us to assess the effect of elevation feedback uncertainty on the GrIS contribution to sea level, using multiple global climate and ice sheet models, without the need for additional, expensive MAR simulations. We estimate this relationship separately below and above the equilibrium line altitude (ELA, separating negative and positive SMB) and for regions north and south of 77° N, from a set of MAR simulations in which we alter the ice sheet surface elevation. These give four "SMB lapse rates", gradients that relate SMB changes to elevation changes. We assess uncertainties within a Bayesian framework, estimating probability distributions for each gradient from which we present best estimates and credibility intervals (CI) that bound 95% of the probability. Below the ELA our gradient estimates are mostly positive, because SMB usually increases with elevation: 0.56 (95% CI: −0.22 to 1.33) kg m−3 a−1 for the north, and 1.91 (1.03 to 2.61) kg m−3 a−1 for the south. Above the ELA, the gradients are much smaller in magnitude: 0.09 (−0.03 to 0.23) kg m−3 a−1 in the north, and 0.07 (−0.07 to 0.59) kg m−3 a−1 in the south, because SMB can either increase or decrease in response to increased elevation. [less ▲]

Detailed reference viewed: 74 (4 ULg)
Full Text
Peer Reviewed
See detailDo global warming-induced circulation pattern changes affect temperature and precipitation over Europe during summer?
Belleflamme, Alexandre ULg; Fettweis, Xavier ULg; Erpicum, Michel ULg

in International Journal of Climatology (2014)

Future climate change projections are not limited to a simple warming, but changes in precipitation and sea level pressure (SLP) are also projected. The SLP changes and the associated atmospheric ... [more ▼]

Future climate change projections are not limited to a simple warming, but changes in precipitation and sea level pressure (SLP) are also projected. The SLP changes and the associated atmospheric circulation changes could directly mitigate or enhance potential projected changes in temperature and precipitation associated with rising temperatures. With the aim of analysing the projected circulation changes and their possible impacts on temperature and precipitation over Europe in summer [June–July–August (JJA)], we apply an automatic circulation type classification method, based on daily SLP, on general circulation model (GCM) outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5) database over the historical period (1951–2005) and for climate under two future scenarios (2006–2100). We focus on summer as it is the season when changes in temperature and precipitation have the highest impact on human health and agriculture. Over the historical observed reference period (1960–1999), our results show that most of the GCMs have significant biases over Europe when compared to reanalysis data sets, both for simulating the observed circulation types and their frequencies, as well as for reproducing the intraclass means of the studied variables. The future projections suggest a decrease of circulation types favouring a low centred over the British Isles for the benefit of more anticyclonic conditions. These circulation changes mitigate the projected precipitation increase over north-western Europe in summer, but they do not significantly affect the projected temperature increase and the precipitation decrease over the Mediterranean region and eastern Europe. However, the circulation changes and the associated precipitation changes are tarnished by a high uncertainty among the GCM projections. [less ▲]

Detailed reference viewed: 16 (5 ULg)
Full Text
Peer Reviewed
See detailHigh-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries
Agosta, Cécile ULg; Favier, Vincent; Krinner, Gerhard et al

in Climate Dynamics (2013), 41(11-12), 3247-3260

About 75% of the Antarctic surface mass gain occurs over areas below 2000 m asl, which cover 40% of the grounded ice-sheet. As the topography is complex in many of these regions, SMB modelling is highly ... [more ▼]

About 75% of the Antarctic surface mass gain occurs over areas below 2000 m asl, which cover 40% of the grounded ice-sheet. As the topography is complex in many of these regions, SMB modelling is highly dependent on resolution, and studying the impact of Antarctica on the future rise in sea level requires physical approaches. We have developed a low time consuming, physical downscaling model for high-resolution (15 km) long-term surface mass balance (SMB) projections. Here, we present results of this model, called SMHiL (surface mass balance high-resolution downscaling), which was forced with the LMDZ4 atmospheric general circulation model to assess SMB variation in the 21st and the 22nd centuries under two different scenarios. The higher resolution of SMHiL better reproduces the geographical patterns of SMB and increase significantly the averaged SMB over the grounded ice-sheet for the end of the 20th century. A comparison with more than 3200 quality-controlled field data shows that LMDZ4 and SMHiL compare the observed values equally well. Nevertheless, field data below 2000 m asl are too scarce to efficiency show the interest of SMHiL and measuring the SMB in these undocumented areas should be then a future scientific priority. Our results suggest that running LMDZ4 at a finer resolution (15km) may give a future increase in SMB in Antarctica about 30% higher than by using its standard resolution (60 km) due to higher increase in precipitation in the coastal areas at 15 km. However, a part (~ 15%) of these discrepancies could be an artefact from SMHiL since it neglects the foehn effect and then likely overestimates the precipitation increase. Future changes in the Antarctic SMB at low elevations will result from the conflict between higher snow accumulation and runoff. For this reason, developing downscaling models is crucial to represent processes in sufficient detail and correctly model the SMB in the coastal areas. [less ▲]

Detailed reference viewed: 56 (5 ULg)
Full Text
Peer Reviewed
See detailA comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland ice sheet
Leeson, A.; Shepherd, A.; Sundal, A. et al

in Journal of Glaciology (2013), 59(208), 1179-1188

Supraglacial lakes (SGLs) affect the dynamics of the Greenland ice sheet by storing runoff and draining episodically. We investigate the evolution of SGLs as reported in three datasets, each based on ... [more ▼]

Supraglacial lakes (SGLs) affect the dynamics of the Greenland ice sheet by storing runoff and draining episodically. We investigate the evolution of SGLs as reported in three datasets, each based on automated classification of satellite imagery. Although the datasets span the period 2001–10, there are differences in temporal sampling, and only the years 2005–07 are common. By subsampling the most populous dataset, we recommend a sampling frequency of one image per 6.5 days in order to minimize uncertainty associated with poor temporal sampling. When compared with manual classification of satellite imagery, all three datasets are found to omit a sizeable (29, 48 and 41%) fraction of lakes and are estimated to document the average size of SGLs to within 0.78, 0.48 and 0.95 km2 . We combine the datasets using a hierarchical scheme, producing a single, optimized, dataset. This combined record reports up to 67% more lakes than a single dataset. During 2005–07, the rate of SGL growth tends to follow the rate at which runoff increases in each year. In 2007, lakes drain earlier than in 2005 and 2006 and remain absent despite continued runoff. This suggests that lakes continue to act as open surface–bed conduits following drainage. [less ▲]

Detailed reference viewed: 13 (0 ULg)
See detailContribution future du bilan de masse de surface Antarctique au niveau des mers par la modélisation régionale
Agosta, Cécile ULg; Fettweis, Xavier ULg; Gallée, Hubert

Scientific conference (2013, October 15)

Le bilan de masse de surface (BMS) Antarctique est encore mal connu, bien qu’on sache qu’il contribue de façon significative à l’évolution actuelle du niveau des mers et que sa contribution soit ... [more ▼]

Le bilan de masse de surface (BMS) Antarctique est encore mal connu, bien qu’on sache qu’il contribue de façon significative à l’évolution actuelle du niveau des mers et que sa contribution soit supposée s’intensifier au cours des prochains siècles. Outre son effet direct sur le niveau des mers, le BMS est également un champs de forçage primordial pour les modèles de calotte. Enfin, alors qu’il existe des mesures directes de l’écoulement de la glace vers l’océan et des variations de masse totales (surface+écoulement) de la calotte, il n’existe pas de mesure directe du bilan de masse de surface à l’échelle du continent. La climatologie actuelle du BMS Antarctique est donc estimée principalement à partir de résultats de modélisation. Par ailleurs, le BMS est le résultat de processus complexes. Afin de le modéliser correctement, il est nécessaire de bien représenter la circulation atmosphérique et les processus physiques spécifiques aux régions polaires. Or les modèles de circulation générale présentent une résolution trop grossière et une physique peu adaptée pour modéliser correctement ces processus. Nous présentons ici des résultats de simulations réalisées le modèle atmosphérique régional MAR, qui fait référence pour la modélisation de l’atmosphère et des processus de surface en région polaire, à une résolution de 50 km pour la fin du 20ème et du 21ème siècle. Nous connaissons la qualité du modèle MAR, cependant, comme tout modèle atmosphérique régional, ses performances sont fortement liées à la qualité des forçages aux limites provenant des Modèles de Circulation Générale (MCG). Nous avons donc sélectionné le MCG le plus apte à simuler le climat présent parmi la nouvelle génération des MCGs provenant de la base de données CMIP5 (http://cmip- pcmdi.llnl.gov/cmip5/), qui seront utilisés dans le prochain rapport du GIEC. Cela est une étape cruciale car les MCGs ne représentant pas correctement le climat présent ne pourront pas donner de résultats probants pour les simulations futures. Nous nous penchons enfin sur l’épineux problème de l’évaluation du BMS modélisé à partir de données de terrain. En effet, un effort important a été réalisé pour répertorier les données de BMS de qualité en Antarctique, cependant nous montrons que ces données ne permettent pas d’évaluer les performances des modèles de façon suffisamment contraignante. L’utilisation d’autres types de données, satellites ou aéroportées par exemple, semble nécessaire, ce qui constitue un volet important de mes recherches en cours. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailEnhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise
Shannon, S.; Payne, A.; Bartholomew, I. et al

in Proceedings of the National Academy of Sciences of the United States of America (2013), 110(49), 19719-19724

We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A ... [more ▼]

We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet’s contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone. [less ▲]

Detailed reference viewed: 13 (4 ULg)
Full Text
Peer Reviewed
See detailSensitivity of Greenland ice sheet projections to model formulations
Goelzer, H.; Huybrechts, P.; Furst, J. et al

in Journal of Glaciology (2013), 59(216), 733749

Physically based projections of the Greenland ice sheet contribution to future sea-level change are subject to uncertainties of the atmospheric and oceanic climatic forcing and to the formulations within ... [more ▼]

Physically based projections of the Greenland ice sheet contribution to future sea-level change are subject to uncertainties of the atmospheric and oceanic climatic forcing and to the formulations within the ice flow model itself. Here a higher-order, three-dimensional thermomechanical ice flow model is used, initialized to the present-day geometry. The forcing comes from a high-resolution regional climate model and from a flowline model applied to four individual marine-terminated glaciers, and results are subsequently extended to the entire ice sheet. The experiments span the next 200 years and consider climate scenario SRES A1B. The surface mass-balance (SMB) scheme is taken either from a regional climate model or from a positive-degree-day (PDD) model using temperature and precipitation anomalies from the underlying climate models. Our model results show that outlet glacier dynamics only account for 6–18% of the sea-level contribution after 200 years, confirming earlier findings that stress the dominant effect of SMB changes. Furthermore, interaction between SMB and ice discharge limits the importance of outlet glacier dynamics with increasing atmospheric forcing. Forcing from the regional climate model produces a 14–31% higher sea-level contribution compared to a PDD model run with the same parameters as for IPCC AR4. [less ▲]

Detailed reference viewed: 76 (5 ULg)