References of "Evans, J Scott"
     in
Bookmark and Share    
See detailFirst Detection of the Nitric Oxide Dayglow on Mars
Stevens, Michael H.; Siskind, David E.; Evans, J. Scott et al

Conference (2017, October 01)

Nitric oxide (NO) is a well-known indicator of solar and auroral activity in the terrestrial upper atmosphere. Direct measurements of NO on Mars can therefore constrain studies of energetic processes ... [more ▼]

Nitric oxide (NO) is a well-known indicator of solar and auroral activity in the terrestrial upper atmosphere. Direct measurements of NO on Mars can therefore constrain studies of energetic processes controlling the composition and structure of its upper atmosphere (80-200 km). Identifying and quantifying these processes is one of the science objectives of NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission currently orbiting Mars. NO can be observed directly by solar resonance fluorescence in the mid-ultraviolet (MUV). Indeed, this approach has routinely been used to measure terrestrial NO for 50 years. On Mars, this “dayglow” emission is very weak relative to other bright MUV features and thus has confounded attempts at its detection there for nearly the same amount of time. Here, we report the first detection of the NO dayglow in the Martian atmosphere using limb observations by the Imaging Ultraviolet Spectrograph (IUVS) on the MAVEN spacecraft. The detection is enabled by the spectral modeling and removal of the carbon monoxide Cameron bands, which dominate the MUV limb spectra. We focus on the spectral region between 213.0-225.5 nm, where three NO gamma bands emit. We will infer NO densities from the dayglow spectra and compare our observations with predictions from a photochemical model. We will discuss the implications, particularly in the context of previous in situ measurements. [less ▲]

Detailed reference viewed: 9 (0 ULiège)
See detailMars topographic clouds: MAVEN/IUVS observations and LMD MGCM predictions
Schneider, Nicholas M.; Connour, Kyle; Forget, Francois et al

Conference (2017, October 01)

The Imaging Ultraviolet Spectrograph (IUVS) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft takes mid-UV spectral images of the Martian atmosphere. From these apoapse disk ... [more ▼]

The Imaging Ultraviolet Spectrograph (IUVS) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft takes mid-UV spectral images of the Martian atmosphere. From these apoapse disk images, information about clouds and aerosols can be retrieved and comprise the only MAVEN observations of topographic clouds and cloud morphologies. Measuring local time variability of large-scale recurring cloud features is made possible with MAVEN’s ~4.5-hour elliptical orbit, something not possible with sun-synchronous orbits. We have run the LMD MGCM (Mars global circulation model) at 1° x 1° resolution to simulate water ice cloud formation with inputs consistent with observing parameters and Mars seasons. Topographic clouds are observed to form daily during the late mornings of northern hemisphere spring and this phenomenon recurs until late summer (Ls = 160°), after which topographic clouds wane in thickness. By northern fall, most topographic clouds cease to form except over Arsia Mons and Pavonis Mons, where clouds can still be observed. Our data show moderate cloud formation over these regions as late as Ls = 220°, something difficult for the model to replicate. Previous studies have shown that models have trouble simulating equatorial cloud thickness in combination with a realistic amount of water vapor and not-too-thick polar water ice clouds, implying aspects of the water cycle are not fully understood. We present data/model comparisons as well as further refinements on parameter inputs based on IUVS observations. [less ▲]

Detailed reference viewed: 11 (0 ULiège)
See detailFirst Retrieval of Thermospheric Carbon Monoxide From Mars Dayglow Observations
Evans, J. Scott; Stevens, Michael H.; Jain, Sonal et al

Conference (2017, October 01)

As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By ... [more ▼]

As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By linking CO density distributions to dynamical wind patterns, the structure and variability of the atmosphere will be better understood. Direct measurements of CO can therefore provide insight into the magnitude and pattern of winds and provide a metric for studying the response of the atmosphere to solar forcing. In addition, CO measurements can help solve outstanding photochemical modeling problems in explaining the abundance of CO at Mars. CO is directly observable by electron impact excitation and solar resonance fluorescence emissions in the far-ultraviolet (FUV). The retrieval of CO from solar fluorescence was first proposed over 40 years ago, but has been elusive at Mars due to significant spectral blending. However, by simulating the spectral shape of each contributing emission feature, electron impact excitation and solar fluorescence brightnesses can be extracted from the composite spectrum using a multiple linear regression approach. We use CO Fourth Positive Group (4PG) molecular band emission observed on the limb (130 - 200 km) by the Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft over both northern and southern hemispheres from October 2014 to December 2016. We present the first direct retrieval of CO densities by FUV remote sensing in the upper atmosphere of Mars. Atmospheric composition is inferred using the terrestrial Atmospheric Ultraviolet Radiance Integrated Code adapted to the Martian atmosphere. We investigate the sensitivity of CO density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our results to predictions from the Mars Global Ionosphere-Thermosphere Model as well as in situ measurements by the Neutral Gas and Ion Mass Spectrometer on MAVEN and quantify any differences. [less ▲]

Detailed reference viewed: 16 (0 ULiège)
See detailMars’ seasonal mesospheric transport seen through nitric oxide nightglow
Milby, Zachariah; Stiepen, Arnaud ULiege; Jain, Sonal et al

Conference (2017, October 01)

We analyze the ultraviolet nightglow in the atmosphere of Mars through nitric oxide (NO) δ and γ band emissions as observed by the Imaging UltraViolet Spectrograph (IUVS) instrument onboard the Mars ... [more ▼]

We analyze the ultraviolet nightglow in the atmosphere of Mars through nitric oxide (NO) δ and γ band emissions as observed by the Imaging UltraViolet Spectrograph (IUVS) instrument onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft when it is at apoapse and periapse.In the dayside thermosphere of Mars, solar extreme-ultraviolet radiation dissociates CO[SUB]2[/SUB] and N[SUB]2[/SUB] molecules. O([SUP]3[/SUP]P) and N([SUP]4[/SUP]S) atoms are carried from the dayside to the nightside by the day-night hemispheric transport process, where they descend through the nightside mesosphere and can radiatively recombine to form NO(C[SUP]2[/SUP]Π). The excited molecules rapidly relax by emitting photons in the UV δ and γ bands. These emissions are indicators of the N and O atom fluxes from the dayside to Mars’ nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017).Observations of these emissions are gathered from a large dataset spanning different seasonal conditions.We present discussion on the variability in the brightness and altitude of the emission with season, geographical position (longitude), and local time, along with possible interpretation by local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves forcing longitudinal variability and data-to-model comparisons indicating a wave-3 structure in Mars’ nightside mesosphere. Quantitative comparison with calculations of the Laboratoire de Météorologie Dynamique-Mars Global Climate Model (LMD-MGCM) suggests the model reproduces both the global trend of NO nightglow emission and its seasonal variation. However, it also indicates large discrepancies, with the emission up to a factor 50 times fainter in the model, suggesting that the predicted transport is too efficient toward the night winter pole in the thermosphere by ˜20° latitude to the north.These questions are now addressed through an extensive dataset of disk images, in complement to improved simulations of the LMD-MGCM and the Mars Global Ionosphere-Thermosphere Model (MGITM) models. [less ▲]

Detailed reference viewed: 13 (1 ULiège)
See detailMartian upper atmosphere response to solar EUV flux and soft X-ray flares
Jain, Sonal; Stewart, Ian; Schneider, Nicholas M. et al

in AAS/Division for Planetary Sciences Meeting Abstracts (2016, October 01)

Planetary upper atmosphere energetics is mainly governed by absorption of solar extreme ultraviolet (EUV) radiation. Understanding the response of planetary upper atmosphere to the daily, long and short ... [more ▼]

Planetary upper atmosphere energetics is mainly governed by absorption of solar extreme ultraviolet (EUV) radiation. Understanding the response of planetary upper atmosphere to the daily, long and short term variation in solar flux is very important to quantify energy budget of upper atmosphere. We report a comprehensive study of Mars dayglow observations made by the IUVS instrument aboard the MAVEN spacecraft, focusing on upper atmospheric response to solar EUV flux. Our analysis shows both short and long term effect of solar EUV flux on Martian thermospheric temperature. We find a significant drop (> 100 K) in thermospheric temperature between Ls = 218° and Ls = 140°, attributed primarily to the decrease in solar activity and increase in heliocentric distance. IUVS has observed response of Martian thermosphere to the 27-day solar flux variation due to solar rotation.We also report effect of two solar flare events (19 Oct. 2014 and 24 March 2015) on Martian dayglow observations. IUVS observed about ~25% increase in observed brightness of major ultraviolet dayglow emissions below 120 km, where most of the high energy photons (< 10 nm) deposit their energy. The results presented in this talk will help us better understand the role of EUV flux in total heat budget of Martian thermosphere. [less ▲]

Detailed reference viewed: 3 (1 ULiège)
See detailStructure and variability of the Martian upper atmosphere: Ultraviolet dayglow observations by MAVEN/IUVS
Deighan, Justin; Jain, Sonal K.; Lo, Daniel Y. et al

in AAS/Division for Planetary Sciences Meeting Abstracts (2015, November 01)

Mars has been studied extensively at ultraviolet wavelengths starting from Mariner 6 and 7, Mariner 9, and more recently by SPICAM aboard Mars Express. The results from these measurements reveal a large ... [more ▼]

Mars has been studied extensively at ultraviolet wavelengths starting from Mariner 6 and 7, Mariner 9, and more recently by SPICAM aboard Mars Express. The results from these measurements reveal a large variability in the composition and structure of the Martian upper atmosphere. However, due to the lack of simultaneous measurements of energy input (such as solar electromagnetic and particle flux), and limitations in the observation geometry and data itself, this variability is still not fully understood.We report a comprehensive study of Mars dayglow observations by the Imaging Ultraviolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite, focusing on vertical and global upper atmospheric structure and seasonal variability. The dayglow emission spectra show features similar to previous UV measurements at Mars. IUVS has detected a second, low-altitude peak in the emission profile of OI 297.2 nm, confirming the prediction that the absorption of solar Lyman alpha emission is an important energy source there. We find a significant drop in thermospheric scale height and temperature between Ls = 218° and Ls = 337 - 352°, attributed primarily to the decrease in solar activity and increase in heliocentric distance. The CO[SUB]2[/SUB][SUP]+[/SUP] UVD peak intensity is well correlated with simultaneous observations of solar 17 - 22 nm irradiance at Mars by Extreme Ultraviolet Monitor (EUVM) aboard MAVEN. Variations of the derived CO[SUB]2[/SUB] density also exhibit significant persistent global structure with longitudinal wavenumbers 1, 2 and 3 in a fixed local solar time frame, pointing to non-migrating atmospheric tides driven by diurnal solar heating. We will present and discuss the variability in Martian UV dayglow, its dependence on solar EUV flux, and the importance of IUVS observations in our current understanding of Mars’ thermosphere. [less ▲]

Detailed reference viewed: 10 (1 ULiège)
Full Text
Peer Reviewed
See detailThe production of Titan's ultraviolet nitrogen airglow
Stevens, Michael H; Gustin, Jacques ULiege; Ajello, Joseph M et al

in Journal of Geophysical Research. Space Physics (2011), 116

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb in the extreme ultraviolet (EUV) and far ultraviolet (FUV) on 22 June 2009 from a mean distance of 23 Titan radii. These ... [more ▼]

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb in the extreme ultraviolet (EUV) and far ultraviolet (FUV) on 22 June 2009 from a mean distance of 23 Titan radii. These high-quality observations reveal the same EUV and FUV emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N[SUB]2[/SUB]) as found on Earth. We investigate both of these solar driven processes with a terrestrial airglow model adapted to Titan and find that total predicted radiances for the two brightest N[SUB]2[/SUB] band systems agree with the observed peak radiances to within 5%. Using N[SUB]2[/SUB] densities constrained from in situ observations by the Ion Neutral Mass Spectrometer on Cassini, the altitude of the observed limb peak of the EUV and FUV emission bands is between 840 and 1060 km and generally consistent with model predictions. We find no evidence for carbon emissions in Titan's FUV airglow in contrast to previous Titan airglow studies using UVIS data. In their place, we identify several vibrational bands from the N[SUB]2[/SUB] Vegard-Kaplan system arising from photoelectron impact with predicted peak radiances in agreement with observations. These Titan UV airglow observations are therefore comprised of emissions arising only from solar processes on N[SUB]2[/SUB] with no detectable magnetospheric contribution. Weaker EUV Carroll-Yoshino N[SUB]2[/SUB] bands within the v′ = 3, 4, and 6 progressions between 870 and 1020 Å are underpredicted by about a factor of five while the (0,1) band near 980 Å is overpredicted by about a factor of three. [less ▲]

Detailed reference viewed: 22 (2 ULiège)