References of "Eskenazi, David"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPt/C catalyst for PEM fuel cells: Control of Pt nanoparticles characteristics through a novel plasma deposition method
Laurent-Brocq, Mathilde; Job, Nathalie ULg; Eskenazi, David ULg et al

in Applied Catalysis B : Environmental (2014), 147

Detailed reference viewed: 23 (1 ULg)
Full Text
Peer Reviewed
See detailDegradation of p-nitrophenol and bacteria with TiO2 xerogels sensitized in situ with tetra(4-carboxyphenyl)porphyrins
Tasseroul, Ludivine ULg; Lambert, Stéphanie ULg; Eskenazi, David ULg et al

in Journal of Photochemistry and Photobiology A : Chemistry (2013), 272

TiO2-based materials doped with porphyrins have been prepared using a sol-gel process. To stabilize the TiO2-dye interactions, free metal tetra(4-carboxyphenyl)porphyrin and nickel tetra(4-carboxyphenyl ... [more ▼]

TiO2-based materials doped with porphyrins have been prepared using a sol-gel process. To stabilize the TiO2-dye interactions, free metal tetra(4-carboxyphenyl)porphyrin and nickel tetra(4-carboxyphenyl) porphyrin were introduced in situ into the TiO2 matrix during the sol-gel process rather than by grafting. Samples were thoroughly characterized by TEM, X-ray diffraction, FT-IR, DR-UV/vis and their texture has been examined by nitrogen adsorption-desorption at 77 K. The low thermal treatment allows obtaining anatase-TiO2 particles with high specific surface area without porphyrin degradation. A significant improvement of the photoactivity under visible light of porphyrin doped-TiO2 xerogels was observed for p-nitrophenol and for bacterial degradation. © 2013 Elsevier B.V. All rights reserved. [less ▲]

Detailed reference viewed: 90 (18 ULg)
Full Text
Peer Reviewed
See detailEffect of freeze-drying and self-ignition process on the microstructural and electrochemical properties of Li4Ti5O12
Jamin, Claire ULg; Traina, Karl; Eskenazi, David ULg et al

in Materials Research Bulletin (2013), 48

Crystalline Li4Ti5O12 is synthesized by a method involving the freeze-drying and self-ignition of a gel prepared from titanium isopropoxide, lithium nitrate and hydroxypropylmethylcellulose (HPMC). This ... [more ▼]

Crystalline Li4Ti5O12 is synthesized by a method involving the freeze-drying and self-ignition of a gel prepared from titanium isopropoxide, lithium nitrate and hydroxypropylmethylcellulose (HPMC). This synthesis route yields crystalline Li4Ti5O12 particles after calcination at 800°C for 2 h. In an alternative route, addition of ammonium nitrate shifts the self-ignition mode from wave-like propagation to simultaneous. Powders with different microstructures are thereby obtained. Electrochemical characterization shows that the best results for Li+ intercalation/desintercalation are obtained for the powder prepared without ammonium nitrate addition. These results highlight the necessity for a control of the self-ignition mode to obtain adequate properties. [less ▲]

Detailed reference viewed: 36 (10 ULg)
Full Text
Peer Reviewed
See detailContinuous synthesis of porous carbon xerogel beads.
Eskenazi, David ULg; Kreit, Patrick ULg; Compère, Philippe ULg et al

in Proceedings of the International Carbon Conference 2012 (2012, June 17)

Detailed reference viewed: 10 (6 ULg)