References of "Engel, A"
     in
Bookmark and Share    
Full Text
See detailOzone-Depleting Substances (ODSs) and Related Chemicals (Chapter 1)
Montzka, S. A.; Reimann, S.; Engel, A. et al

in Nohende Ajavon, Ayité-Lô; Newmann, Paul A.; Pyle, John A. (Eds.) et al Scientific Assessment of Ozone Depletion: 2010 (2011)

The amended and adjusted Montreal Protocol continues to be successful at reducing emissions and atmospheric abundances of most controlled ozone-depleting substances (ODSs).

Detailed reference viewed: 87 (4 ULg)
Full Text
Peer Reviewed
See detailValidation of version-4.61 methane and nitrous oxide observed by MIPAS
Payan, S.; Camy-Peyret, C.; Oelhaf, H. et al

in Atmospheric Chemistry and Physics (2009), 9(2), 413-442

The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In ... [more ▼]

The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements. [less ▲]

Detailed reference viewed: 51 (9 ULg)
Full Text
Peer Reviewed
See detailA mathematical modelling of bloom of the coccolithophore Emiliania huxleyi in a mesocosm experiment
Joassin, Pascal ULg; Delille, Bruno ULg; Soetaert, K. et al

in Biogeosciences Discussions (2008), 5

A dynamic model has been developed to represent biogeochemical variables and processes observed during a bloom of Emiliania huxleyi coccolithophore. This bloom was induced in a mesocosm experiment during ... [more ▼]

A dynamic model has been developed to represent biogeochemical variables and processes observed during a bloom of Emiliania huxleyi coccolithophore. This bloom was induced in a mesocosm experiment during which the ecosystem development was followed over a period of 23-days through changes in various biogeochemical parameters such as inorganic nutrients (nitrate, ammonium and phosphate), total alkalinity (TA), dissolved inorganic carbon (DIC), partial pressure of CO[SUB]2[/SUB] (pCO[SUB]2[/SUB]), dissolved oxygen (O[SUB]2[/SUB]), photosynthetic pigments, particulate organic carbon (POC), dissolved organic carbon (DOC), Transparent Exopolymer Particles (TEP), primary production, and calcification. This dynamic model is based on unbalanced algal growth and balanced bacterial growth. In order to adequately reproduce the observations, the model includes an explicit description of phosphorus cycling, calcification, TEP production and an enhanced mortality due to viral lysis. The model represented carbon, nitrogen and phosphorus fluxes observed in the mesocosms. Modelled profiles of algal biomass and final concentrations of DIC and nutrients are in agreement with the experimental observations. [less ▲]

Detailed reference viewed: 30 (8 ULg)
Full Text
See detailLong-lived organic compounds (Chapter 1)
Clerbaux, C.; Cunnold, D. M.; Anderson, J. et al

in Nohende Ajavon, Ayité-Lô; Albritton, Daniel L.; Watson, Robert T. (Eds.) Scientific Assessment of Ozone Depletion: 2006 (2007)

This assessment report is a summary of the scientific community's current understanding of the stratospheric ozone layer and its relation to humankind.

Detailed reference viewed: 22 (4 ULg)
See detailCO2 fertilization enhances carbon over-consumption during a phytoplankton bloom
Riebesell, U.; Bellerby, R.; Carbonnel, V. et al

Conference (2004, October)

Detailed reference viewed: 4 (0 ULg)
See detailPelagic Ecosystems in a High CO2 Ocean : the Mesocosm Approach
Riebesell, U.; Allgaier, M; Avgoustidi, V. et al

Poster (2004, October)

Detailed reference viewed: 10 (0 ULg)
Full Text
See detailValidation of MIPAS N2O Profiles by Stratospherc Balloon, Aircraft and Ground Based Measurements
Camy-Peyret, C.; Dufour, G.; Payan, S. et al

Scientific conference (2004, May)

The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-bone, aircraft and ground-based correlative measurements. In particular the ... [more ▼]

The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-bone, aircraft and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As a companion to a similar paper on CH4 and in parallel to the contribution of the individual validation teams, the resent paper provides a synthesis of comparisons performed between MIPAS N2O profiles roduced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61) or by the IMK-FZK scientific processor and correlative measurements obtained from balloon and aircraft experiments as well as from ground-based instruments. [less ▲]

Detailed reference viewed: 15 (1 ULg)
See detailTransparent Exopolymer Particles (TEP) production by marine phytoplankton in response to increasing CO2 : laboratory and field mesocosm experiments
Engel, A.; Heemann, C.; Schartau, M. et al

Conference (2003, April)

Detailed reference viewed: 9 (0 ULg)
See detailLong-lived organic compounds (Chapter 1)
Prinn, R.; Zander, Rodolphe ULg; Cunnold, D. M. et al

in Albritton; Aucamp, Pieter J.; Mégie, Gérard (Eds.) et al Scientific Assessment of Ozone Depletion: 1998 (1999)

This assessment report is a summary of the scientific community's current understanding of the stratospheric ozone layer and its relation to humankind.

Detailed reference viewed: 16 (5 ULg)
Full Text
Peer Reviewed
See detailThe 1994 northern midlatitude budget of stratospheric chlorine derived from ATMOS/ATLAS-3 observations
Zander, Rodolphe ULg; Mahieu, Emmanuel ULg; Gunson, M. R. et al

in Geophysical Research Letters (1996), 23(17), 2357-2360

Volume mixing ratio (VMR) profiles of the chlorine-bearing gases HCl, ClONO2, CCl3F, CCl2F2, CHClF2, CCl4, and CH3Cl have been measured between 3 and 49 degrees northern- and 65 to 72 degrees southern ... [more ▼]

Volume mixing ratio (VMR) profiles of the chlorine-bearing gases HCl, ClONO2, CCl3F, CCl2F2, CHClF2, CCl4, and CH3Cl have been measured between 3 and 49 degrees northern- and 65 to 72 degrees southern latitudes with the Atmospheric Trace MOlecule Spectroscopy (ATMOS) instrument during the ATmospheric Laboratory for Applications and Science (ATLAS)-3 shuttle mission of 3 to 12 November 1994. A subset of these profiles obtained between 20 and 49 degrees N at sunset, combined with ClO profiles measured by the Millimeter-wave Atmospheric Sounder (MAS) also from aboard ATLAS-3, measurements by balloon for HOCl, CH3CCl3 and C2Cl3F3, and model calculations for COClF indicates that the mean burden of chlorine, Cl-TOT, was equal to (3.53 +/- 0.10) ppbv (parts per billion by volume), 1-sigma, throughout the stratosphere at the time of the ATLAS 3 mission. This is some 37% larger than the mean 2.58 ppbv value measured by ATMOS within the same latitude zone during the Spacelab 3 flight of 29 April to 6 May 1985, consitent with an exponential growth rate of the chlorine loading in the stratosphere equal to 3.3%/yr or a linear increase of 0.10 ppbv/yr over the Spring-1985 to Fall-1994 time period. These findings are in agreement with both the burden and increase of the main anthropogenic Cl-bearing source gases at the surface during the 1980s, confirming that the stratospheric chlorine loading is primarily of anthropogenic origin. [less ▲]

Detailed reference viewed: 24 (5 ULg)