References of "Emilio, M"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Size, Shape, Albedo, Density, and Atmospheric Limit of Transneptunian Object (50000) Quaoar from Multi-chord Stellar Occultations
Braga-Ribas, F.; Sicardy, B.; Ortiz, J. L. et al

in Astrophysical Journal (2013), 773

We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation ... [more ▼]

We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation observed on 2012 October 15. If the timing of the five chords obtained in 2011 were correct, then Quaoar would possess topographic features (crater or mountain) that would be too large for a body of this mass. An alternative model consists in applying time shifts to some chords to account for possible timing errors. Satisfactory elliptical fits to the chords are then possible, yielding an equivalent radius R [SUB]equiv[/SUB] = 555 ± 2.5 km and geometric visual albedo p[SUB]V[/SUB] = 0.109 ± 0.007. Assuming that Quaoar is a Maclaurin spheroid with an indeterminate polar aspect angle, we derive a true oblateness of \epsilon = 0.087^{+0.0268}_{-0.0175}, an equatorial radius of 569^{+24}_{-17} km, and a density of 1.99 ± 0.46 g cm[SUP]–3[/SUP]. The orientation of our preferred solution in the plane of the sky implies that Quaoar's satellite Weywot cannot have an equatorial orbit. Finally, we detect no global atmosphere around Quaoar, considering a pressure upper limit of about 20 nbar for a pure methane atmosphere. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailAlbedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation
Ortiz, J. L.; Sicardy, B.; Braga-Ribas, F. et al

in Nature (2012), 491

Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies. Pluto possesses an atmosphere whereas Eris ... [more ▼]

Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies. Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos. Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto, and is currently at a distance to the Sun intermediate between the two. Although Makemake's size (1,420+/-60km) and albedo are roughly known, there has been no constraint on its density and there were expectations that it could have a Pluto-like atmosphere. Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430+/-9km (1σ) and 1,502+/-45km, implying a V-band geometric albedo p[SUB]V[/SUB] = 0.77+/-0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4-12nanobar (1σ) for the surface pressure, although a localized atmosphere is possible. A density of 1.7+/-0.3gcm[SUP]-3[/SUP] is inferred from the data. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
Peer Reviewed
See detailStochastic gravito-inertial modes discovered by CoRoT in the hot Be star HD 51452
Neiner, C.; Floquet, M.; Samadi, R. et al

in Astronomy and Astrophysics (2012), 546

Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the κ-mechanism, i.e. an effect of the opacity of ... [more ▼]

Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the κ-mechanism, i.e. an effect of the opacity of iron-peak elements in the envelope of the star. In the Milky Way, p-modes are observed in stars that are hotter than or equal to the B3 spectral type, while g-modes are observed at the B2 spectral type and cooler. <BR /> Aims: We observed a B0IVe star, HD 51452, with the high-precision, high-cadence photometric CoRoT satellite and high-resolution, ground-based HARPS and SOPHIE spectrographs to study its pulsations in great detail. We also used the lower resolution spectra available in the BeSS database. <BR /> Methods: We analyzed the CoRoT and spectroscopic data with several methods: Clean-NG, FreqFind, and a sliding window method. We also analyzed spectral quantities, such as the violet over red (V/R) emission variations, to obtain information about the variation in the circumstellar environment. We calculated a stellar structure model with the ESTER code to test the various interpretation of the results. <BR /> Results: We detect 189 frequencies of variations in the CoRoT light curve in the range between 0 and 4.5 c d[SUP]-1[/SUP]. The main frequencies are also recovered in the spectroscopic data. In particular we find that HD 51452 undergoes gravito-inertial modes that are not in the domain of those excited by the κ-mechanism. We propose that these are stochastic modes excited in the convective zones and that at least some of them are a multiplet of r-modes (i.e. subinertial modes mainly driven by the Coriolis acceleration). Stochastically excited gravito-inertial modes had never been observed in any star, and theory predicted that their very low amplitudes would be undetectable even with CoRoT. We suggest that the amplitudes are enhanced in HD 51452 because of the very rapid stellar rotation. In addition, we find that the amplitude variations of these modes are related to the occurrence of minor outbursts. <BR /> Conclusions: Thanks to CoRoT data, we have detected a new kind of pulsations in HD 51452, which are stochastically excited gravito-inertial modes, probably due to its very rapid rotation. These modes are probably also present in other rapidly rotating hot Be stars. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD, and Science Programs), Germany, and Spain. This work uses observations partly made with the HARPS instrument at the 3.6-m ESO telescope (La Silla, Chile) in the framework of the LP182.D-0356, as well as data obtained with Sophie at OHP and from the BeSS database.Table 3 is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 27 (4 ULg)
Full Text
Peer Reviewed
See detailA Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation
Sicardy, B.; Ortiz, J. L.; Assafin, M. et al

in Nature (2011), 478

The dwarf planet Eris is a trans-Neptunian object with an orbital eccentricity of 0.44, an inclination of 44 degrees and a surface composition very similar to that of Pluto. It resides at present at 95.7 ... [more ▼]

The dwarf planet Eris is a trans-Neptunian object with an orbital eccentricity of 0.44, an inclination of 44 degrees and a surface composition very similar to that of Pluto. It resides at present at 95.7 astronomical units (1AU is the Earth-Sun distance) from Earth, near its aphelion and more than three times farther than Pluto. Owing to this great distance, measuring its size or detecting a putative atmosphere is difficult. Here we report the observation of a multi-chord stellar occultation by Eris on 6 November 2010 UT. The event is consistent with a spherical shape for Eris, with radius 1,163+/-6kilometres, density 2.52+/-0.05 grams per cm[SUP]3[/SUP] and a high visible geometric albedo, . No nitrogen, argon or methane atmospheres are detected with surface pressure larger than ~1nanobar, about 10,000 times more tenuous than Pluto's present atmosphere. As Pluto's radius is estimated to be between 1,150 and 1,200 kilometres, Eris appears as a Pluto twin, with a bright surface possibly caused by a collapsed atmosphere, owing to its cold environment. We anticipate that this atmosphere may periodically sublimate as Eris approaches its perihelion, at 37.8 astronomical units from the Sun. [less ▲]

Detailed reference viewed: 18 (6 ULg)
Full Text
See detailStellar Occultations by TNOs: the January 08, 2011 by (208996) 2003 AZ84 and the May 04, 2011 by (50000) Quaoar
Braga-Ribas, F.; Sicardy, B.; Ortiz, J. L. et al

in EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France. <A href="http://meetings.copernicus.org/epsc-dps2011">http://meetings.copernicus.org/epsc-dps2011</A>, p.1060 (2011, October 01)

Between February 2010 and May 2011, our group has observed five stellar occultations by Trans-Neptunian Objects (TNOs), giving the size and shape for some of the biggest TNO's: Varuna, Eris, 2003 AZ84 ... [more ▼]

Between February 2010 and May 2011, our group has observed five stellar occultations by Trans-Neptunian Objects (TNOs), giving the size and shape for some of the biggest TNO's: Varuna, Eris, 2003 AZ84, Makemake and Quaoar. Here we present two of them: the January 08 stellar occultation by 2003 AZ84, and the May 04 by Quaoar. For the event of 2003 AZ84 we obtained one positive and another negative occultation chords in Chile. We give a lower limit to the diameter of the TNO. The event of Quaoar was observed from 16 sites distributed in Uruguay, Argentina, Chile and Brazil. Five of them yielded positive detection of the occultation. A preliminary analysis shows that the body is probably elongated and significantly bigger than the size determined by Fraser & Brown 2010, with a diameter of 890km. Using the size determined by the occultation, we will discuss the implications for the body density and albedo determination. The upper limit of the atmosphere is also studied. [less ▲]

Detailed reference viewed: 49 (0 ULg)
Full Text
See detailThe 3/4 July 2010 Pluto Stellar-Occultation Observations
Pasachoff, Jay M; Elliot, J. L.; Souza, S. P. et al

in Bulletin of the American Astronomical Society (2010, October 01), 42

Continuing our monitoring of Pluto's atmospheric temperature and pressure, previously shown by us to be increasing (Elliot et al., Nature 424, 165, 2003; Pasachoff et al., AJ 129, 1718, 2005) and ... [more ▼]

Continuing our monitoring of Pluto's atmospheric temperature and pressure, previously shown by us to be increasing (Elliot et al., Nature 424, 165, 2003; Pasachoff et al., AJ 129, 1718, 2005) and subsequently found by us to be leveling off (Elliot et al., AJ 134, 1, 2007), we report on a stellar occultation by Pluto of UCAC2 mag=15.3, observed from South America and Africa on 4 July 2010 UT. Success was achieved with a 0.45 m at Cerro Calan using one of our POETS (Portable Occultation, Eclipse, and Transit System; Souza et al. PASP 118, 1550, 2006), a 1.0 SMARTS (Small and Medium Aperture Research Telescope System) at Cerro Tololo, four 0.6 m telescopes of PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes) on Cerro Tololo, and TRAPPIST's (TRansiting Planets and Planetesimals Small Telescope) 0.6-m telescope on La Silla in Chile; the 0.35 m telescope of U. Ponta Grossa, Brazil; and the 0.75-m ATOM (Automatic Telescope for Optical Monitoring), Namibia, using POETS. Winds prevented opening the 6.5 m Magellan/Clay telescope on Las Campanas, Chile, with its own frame-transfer camera, and clouds obscured the 1.9 m telescope at Sutherland, South Africa, which had POETS. With shadow velocity 23.6 km/s, it was a rapid event: maximum occultation <2 minutes. The observations were supported in part by grants NNX08AO50G to Williams College and NNX10AB27G to MIT from NASA's Planetary Astronomy Division, and NNH08AI17I to USNO for astrometry. Student participation was supported in part by NASA's Massachusetts Space Grant and NSF's REU. Japan's government donated U. Chile's Cerro Calan Goto telescope. PROMPT observations were made possible by the Robert Martin Ayers Science Fund. TRAPPIST is a project driven by the University of Liège, in close collaboration with the Observatory of Geneva, supported by the Belgian Fund for Scientific Research and the Swiss National Science Foundation. [less ▲]

Detailed reference viewed: 29 (5 ULg)
Full Text
Peer Reviewed
See detailFirst asteroseismic results from CoRoT
Michel, Eric; Baglin, A.; Weiss, W. W. et al

in Communications in Asteroseismology (2008), 156

About one year after the end of the first observational run and six months after the first CoRoT data delivery, we comment the data exploitation progress for different types of stars. We consider first ... [more ▼]

About one year after the end of the first observational run and six months after the first CoRoT data delivery, we comment the data exploitation progress for different types of stars. We consider first results to illustrate how these data of unprecedented quality shed a new light on the field of stellar seismology. [less ▲]

Detailed reference viewed: 44 (18 ULg)