References of "Ehrenreich, D"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Spitzer search for the transits of HARPS low-mass planets. II. Null results for 19 planets
Gillon, Michaël ULg; Demory, B.-O.; Lovis, C. et al

in Astronomy and Astrophysics (2017), 601

Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of ... [more ▼]

Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50 ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys. The photometric and radial velocity time series used in this work are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A117">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A117</A> [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailReconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α line
Bourrier, V.; Ehrenreich, D.; Wheatley, P. J. et al

in Astronomy and Astrophysics (2017), 599

The TRAPPIST-1 system offers the opportunity to characterize terrestrial, potentially habitable planets orbiting a nearby ultracool dwarf star. We performed a four-orbit reconnaissance with the Space ... [more ▼]

The TRAPPIST-1 system offers the opportunity to characterize terrestrial, potentially habitable planets orbiting a nearby ultracool dwarf star. We performed a four-orbit reconnaissance with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope to study the stellar emission at Lyman-α, to assess the presence of hydrogen exospheres around the two inner planets, and to determine their UV irradiation. We detect the Lyman-α line of TRAPPIST-1, making it the coldest exoplanet host star for which this line has been measured. We reconstruct the intrinsic line profile, showing that it lacks broad wings and is much fainter than expected from the stellar X-ray emission. TRAPPIST-1 has a similar X-ray emission as Proxima Cen but a much lower Ly-α emission. This suggests that TRAPPIST-1 chromosphere is only moderately active compared to its transition region and corona. We estimated the atmospheric mass loss rates for all planets, and found that despite a moderate extreme UV emission the total XUV irradiation could be strong enough to strip the atmospheres of the inner planets in a few billions years. We detect marginal flux decreases at the times of TRAPPIST-1b and c transits, which might originate from stellar activity, but could also hint at the presence of extended hydrogen exospheres. Understanding the origin of these Lyman-α variations will be crucial in assessing the atmospheric stability and potential habitability of the TRAPPIST-1 planets. [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailThe PLATO 2.0 Mission
Rauer, H.; Catala, C.; Aerts, C. et al

in Experimental Astronomy (2014)

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental ... [more ▼]

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science. [less ▲]

Detailed reference viewed: 36 (13 ULg)
Full Text
Peer Reviewed
See detailTransit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star
Van Grootel, Valérie ULg; Gillon, Michaël ULg; Valencia, D. et al

in Astrophysical Journal (2014), 786

Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition ... [more ▼]

Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass ($M_*=0.77\pm0.05\,M_{\odot}$) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-HIRES radial velocities, and MOST and Spitzer photometry. HD 97658 b is a massive ($M_P=7.55^{+0.83}_{-0.79} M_{\oplus}$) and large ($R_{P} = 2.247^{+0.098}_{-0.095} R_{\oplus}$ at 4.5 $\mu$m) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, by at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. Orbiting a bright host star, HD 97658 b will be a key target for coming space missions TESS, CHEOPS, PLATO, and also JWST, to characterize thoroughly its structure and atmosphere. [less ▲]

Detailed reference viewed: 57 (13 ULg)
Full Text
See detailCHEOPS: A transit photometry mission for ESA's small mission programme
Broeg, C.; Fortier, A.; Ehrenreich, D. et al

in Saglia, Roberto (Ed.) European Physical Journal Web of Conferences (2013, April 01)

Ground based radial velocity (RV) searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and ... [more ▼]

Ground based radial velocity (RV) searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and can discover Neptune size planets around bright stars. These searches will find exoplanets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHaracterizing ExoPlanet Satellite) will fill this gap. It will perform ultra-high precision photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric configuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars' brightness, high precision RV measurements will be possible for all targets. All planets observed in transit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes. [less ▲]

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailA near-infrared interferometric survey of debris disc stars. II. CHARA/FLUOR observations of six early-type dwarfs
Absil, Olivier ULg; di Folco, E.; Mérand, A. et al

in Astronomy and Astrophysics (2008), 487

Aims. We aim at directly detecting the presence of optically thin circumstellar dust emission within the terrestrial planetary zone around main sequence stars known to harbour cold debris discs. The ... [more ▼]

Aims. We aim at directly detecting the presence of optically thin circumstellar dust emission within the terrestrial planetary zone around main sequence stars known to harbour cold debris discs. The present study focuses on a sample of six bright A- and early F-type stars. Methods: High-precision interferometric observations have been obtained in the near-infrared K band with the FLUOR instrument installed on the CHARA Array. The measured squared visibilities are compared to the expected visibility of the stellar photospheres based on theoretical photospheric models taking into account rotational distortion. We search for potential visibility reduction at short baselines, a direct piece of evidence for resolved circumstellar emission. Results: Our observations bring to light the presence of resolved circumstellar emission around one of the six target stars (zeta Aql) at the 5sigma level. The morphology of the emission source cannot be directly constrained because of the sparse spatial frequency sampling of our interferometric data. Using complementary adaptive optics observations and radial velocity measurements, we find that the presence of a low-mass companion is a likely origin for the excess emission. The potential companion is characterised by a K-band contrast of four magnitudes. It has a most probable mass of about 0.6~Msun and is expected to orbit between about 5.5 AU and 8 AU from its host star assuming a purely circular orbit. Nevertheless, by adjusting a physical debris disc model to the observed Spectral Energy Distribution of the zeta Aql system, we also show that the presence of hot dust within 10 AU from zeta Aql, producing a total thermal emission equal to 1.69 ± 0.31% of the photospheric flux in the K band, is another viable explanation for the observed near-infrared excess. Our re-interpretation of archival near- to far-infrared photometric measurements shows however that cold dust is not present around zeta Aql at the sensitivity limit of the IRS and MIPS instruments onboard Spitzer, and urges us to remove zeta Aql from the category of bona fide debris disc stars. Conclusions: The hot debris disc around Vega (Absil et al. 2006) currently remains our only secure resolved detection within the context of this survey, with six genuine early-type debris disc stars observed so far. Further observations will be needed to assess whether zeta Aql also belongs to this hot debris disc category. Partly based on observations collected at the European Southern Observatory, La Silla, Chile, under program IDs 073.C-0733, 077.C-0295 and 080.C-0712. [less ▲]

Detailed reference viewed: 33 (4 ULg)