References of "Dzhekieva, Liudmila"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailInhibition of dd-Peptidases by a Specific Trifluoroketone: Crystal Structure of a Complex with the Actinomadura R39 dd-Peptidase.
Dzhekieva, Liudmila; Adediran, S. A.; Herman, Raphael et al

in Biochemistry (2013)

Inhibitors of bacterial dd-peptidases represent potential antibiotics. In the search for alternatives to beta-lactams, we have investigated a series of compounds designed to generate transition state ... [more ▼]

Inhibitors of bacterial dd-peptidases represent potential antibiotics. In the search for alternatives to beta-lactams, we have investigated a series of compounds designed to generate transition state analogue structures upon reaction with dd-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter includes a boronic acid, two alcohols, an aldehyde, and a trifluoroketone. The compounds were tested against two low-molecular mass class C dd-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but rather unexpectedly from precedent, the trifluoroketone [d-alpha-aminopimelyl(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, we found the trifluoroketone was the strongest inhibitor of the Actinomadura R39 dd-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates as a warhead that can be incorporated into new and effective dd-peptidase inhibitors and therefore, perhaps, antibiotics. [less ▲]

Detailed reference viewed: 39 (2 ULg)
Full Text
Peer Reviewed
See detailSubstrate Specificity of Low-Molecular Mass Bacterial DD-Peptidases
Nemmara, Venkatesh V; Dzhekieva, Liudmila; Subarno Sakar, Kumar et al

in Biochemistry (2011), 50

The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high ... [more ▼]

The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and lowmolecular mass (LMM) enzymes. The latter group, which is subdivided into classes A−C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 DD-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD-peptidases achieve substrate specificity, both in vitro and in vivo, remains unknown. [less ▲]

Detailed reference viewed: 23 (2 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of a complex between the Actinomadura R39 DD-peptidase and a peptidoglycan-mimetic boronate inhibitor: interpretation of a transition state analogue in terms of catalytic mechanism.
Dzhekieva, Liudmila; Rocaboy, Mathieu ULg; Kerff, Frédéric ULg et al

in Biochemistry (2010), 49(30), 6411-9

The Actinomadura R39 DD-peptidase is a bacterial low molecular weight class C penicillin-binding protein. It has previously been shown to catalyze hydrolysis and aminolysis of small D-alanyl-D-alanine ... [more ▼]

The Actinomadura R39 DD-peptidase is a bacterial low molecular weight class C penicillin-binding protein. It has previously been shown to catalyze hydrolysis and aminolysis of small D-alanyl-D-alanine terminating peptides, especially those with a side chain that mimics the amino terminus of the stem peptide precursor to the bacterial cell wall. This paper describes the synthesis of (D-alpha-aminopimelylamino)-D-1-ethylboronic acid, designed to be a peptidoglycan-mimetic transition state analogue inhibitor of the R39 DD-peptidase. The boronate was found to be a potent inhibitor of the peptidase with a K(i) value of 32 +/- 6 nM. Since it binds some 30 times more strongly than the analogous peptide substrate, the boronate may well be a transition state analogue. A crystal structure of the inhibitory complex shows the boronate covalently bound to the nucleophilic active site Ser 49. The aminopimelyl side chain is bound into the site previously identified as specific for this moiety. One boronate oxygen is held in the oxyanion hole; the other, occupying the leaving group site of acylation or the nucleophile site of deacylation, appears to be hydrogen-bonded to the hydroxyl group of Ser 298. The Ser 49 oxygen appears to be hydrogen bonded to Lys 52. If it is assumed that this structure does resemble a high-energy tetrahedral intermediate in catalysis, it seems likely that Ser 298 participates as part of a proton transfer chain initiated by Lys 52 or Lys 410 as the primary proton donor/acceptor. The structure, therefore, supports a particular class of mechanism that employs this proton transfer device. [less ▲]

Detailed reference viewed: 30 (3 ULg)