References of "Dye, S"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of
GRAvItational Lenses: XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231

Tewes, M.; Courbin, F.; Meylan, G. et al

in Astronomy and Astrophysics (2013)

We present the results from 9 years of optically monitoring the gravitationally lensed z=0.658 quasar RX J1131-1231. The R band light curves of the 4 individual images of the quasar are obtained using ... [more ▼]

We present the results from 9 years of optically monitoring the gravitationally lensed z=0.658 quasar RX J1131-1231. The R band light curves of the 4 individual images of the quasar are obtained using deconvolution photometry, for a total of 707 epochs. Several sharp quasar variability features strongly constrain the time delays between the quasar images. Using three different numerical techniques, we measure these delays for all possible pairs of quasar images, while always processing the 4 light curves simultaneously. For all three methods, the delays between the 3 close images A, B and C are compatible with being 0, while we measure the delay of image D to be 91 days, with a fractional uncertainty of 1.5% (1 sigma), including systematic errors. Our analysis of random and systematic errors accounts in a realistic way for the observed quasar variability, fluctuating microlensing magnification over a broad range of temporal scales, noise properties, and seasonal gaps. Finally, we find that our time delay measurement methods yield compatible results when applied to subsets of the data. [less ▲]

Detailed reference viewed: 19 (9 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223
Courbin, F.; Chantry, Virginie ULg; Revaz, Y. et al

in Astronomy and Astrophysics (2011), 536

We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010 ... [more ▼]

We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010. With seven years of data, we clearly show that quasar image A is affected by strong microlensing variations and that the time delays are best expressed relative to quasar image B. We measured ΔtBC = 7.8 ± 0.8 days, ΔtBD = -6.5 ± 0.7 days and ΔtCD = -14.3 ± 0.8 days. We spacially deconvolved HST NICMOS2 F160W images to derive accurate astrometry of the quasar images and to infer the light profile of the lensing galaxy. We combined these images with a stellar population fitting of a deep VLT spectrum of the lensing galaxy to estimate the baryonic fraction, fb, in the Einstein radius. We measured fb = 0.65-0.10+0.13 if the lensing galaxy has a Salpeter IMF and fb = 0.45-0.07+0.04 if it has a Kroupa IMF. The spectrum also allowed us to estimate the velocity dispersion of the lensing galaxy, σap = 222 ± 34 km s-1. We used fb and σap to constrain an analytical model of the lensing galaxy composed of an Hernquist plus generalized NFW profile. We solved the Jeans equations numerically for the model and explored the parameter space under the additional requirement that the model must predict the correct astrometry for the quasar images. Given the current error bars on fb and σap, we did not constrain H0 yet with high accuracy, i.e., we found a broad range of models with χ2 < 1. However, narrowing this range is possible, provided a better velocity dispersion measurement becomes available. In addition, increasing the depth of the current HST imaging data of HE 0435-1223 will allow us to combine ourconstraints with lens reconstruction techniques that make use of the full Einstein ring that is visible in this object. Based on observations made with the 1.2 m Euler Swiss Telescope, the 1.5 m telescope of Maidanak Observatory in Uzbekistan, and with the 1.2 m Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The NASA/ESA Hubble Space Telescope data was obtained from the data archive at the Space Telescope Science Institute, which is operated by AURA, the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26555.Light curves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/536/A53 [less ▲]

Detailed reference viewed: 35 (13 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. II. SDSS J0924+0219: the redshift of the lensing galaxy, the quasar spectral variability and the Einstein rings
Eigenbrod, A.; Courbin, F.; Dye, S. et al

in Astronomy and Astrophysics (2006), 451

Aims.To provide the observational constraints required to use the gravitationally lensed quasar SDSS J0924+0219 for the determination of H[SUB]0[/SUB] from the time delay method. We measure here the ... [more ▼]

Aims.To provide the observational constraints required to use the gravitationally lensed quasar SDSS J0924+0219 for the determination of H[SUB]0[/SUB] from the time delay method. We measure here the redshift of the lensing galaxy, we show the spectral variability of the source, and we resolve the lensed host galaxy of the source. <BR />Methods.We present our VLT/FORS1 deep spectroscopic observations of the lensed quasar SDSS J0924+0219, as well as archival HST/NICMOS and ACS images of the same object. The two-epoch spectra, obtained in the Multi Object Spectroscopy (MOS) mode, allow for very accurate flux calibration and spatial deconvolution. This strategy provides spectra for the lensing galaxy and for the quasar images A and B, free of any mutual light contamination. We deconvolve the HST images as well, which reveal a double Einstein ring. The mass distributions in the lens, reconstructed in several ways, are compared. <BR />Results.We determine the redshift of the lensing galaxy in SDSS J0924+0219: z_lens = 0.394±0.001. Only slight spectral variability is seen in the continuum of quasar images A and B, while the C III] , Mg II and Fe II emission lines display obvious changes. The flux ratio between the quasar images A and B is the same in the emission lines and in the continuum. One of the Einstein rings found using deconvolution corresponds to the lensed quasar host galaxy at z=1.524 and a second bluer one, is the image either of a star-forming region in the host galaxy, or of another unrelated lower redshift object. A broad range of lens models give a satisfactory fit to the data. However, they predict very different time delays, making SDSS J0924+0219 an object of particular interest for photometric monitoring. In addition, the lens models reconstructed using exclusively the constraints from the Einstein rings, or using exclusively the astrometry of the quasar images, are not compatible. This suggests that multipole-like structures play an important role in SDSS J0924+0219. <BR /> [less ▲]

Detailed reference viewed: 20 (2 ULg)