References of "Dyc, Christelle"
     in
Bookmark and Share    
See detailEcotoxicology of Organic and Inorganic Pollutants in Chelonians. Marine Turtle Risk to Pollutant Exposure
Dyc, Christelle ULg

Doctoral thesis (2013)

Marine turtles are oviparous vertebrates subdivided in seven existing species widespread in most of the oceans. They are suffering from human activities and especially from fishery by-catch, egg ... [more ▼]

Marine turtles are oviparous vertebrates subdivided in seven existing species widespread in most of the oceans. They are suffering from human activities and especially from fishery by-catch, egg harvesting, adult poaching, degradation of their habitats, environmental pollution and climate change. While direct threats (e.g. fishery by-catch) are often less challenging to identify and predict, indirect threats associated with environmental pollution often induce more insidious effects that can take longer to manifest and be more significant and lasting. Understanding the marine turtle risks to pollutant exposure is critical because a) pollutants are persistent and ubiquitous in the environment, b) all the marine turtle species are listed on the Red List of Threatened Species by the IUCN and c) pollutants were indicated to adversely threaten the marine turtles’ survival, especially the developing individuals. Despite decades of investigations and evidences of significant pollutant threats, few data is still being available for marine turtles. The present study proposed to assess pollutant exposure in the green Chelonia mydas and hawksbill Eretmochelys imbricata marine turtles nesting in Guadeloupe (French West Indies FWI, Caribbean Sea). Trace elements (e.g. selenium, mercury and cadmium) and organohalogen pollutants OHP (e.g. polychlorobiphenyls PCBs and chlordecone) were determined in dermis collected from the nesting females and in their eggs. A broad range of pollutants was detected in these tissues among which chlordecone. This was quite interesting because of the past history of chlordecone in the FWI. Results suggested that the green and hawksbill marine turtles fed on contaminated foraging ground, accumulated chlordecone in their body and then transferred it into their eggs during the egg formation. Both Guadeloupean marine turtle species appeared less exposed to OHP and trace elements than other marine turtle populations, except for other green marine turtle colonies (i.e. trace elements). The developing embryo risks to pollutant exposure were evaluated as those for the Guadeloupean inhabitants that consume marine turtle eggs. Little threat may be expected for the Guadeloupean inhabitants while some pollutants may affect the marine turtle embryos’ survival of both species (i.e. p,p’-DDE, cadmium, mercury and selenium). The present study was not the first to arise concern about embryo risks to selenium exposure as suggested by previous reptilian studies including marine turtles. As part of the present study, the toxicokinetics and dynamics of selenium were thus approached under laboratory conditions by using the slider turtle Trachemys scripta as model candidate. Juvenile turtles dietary exposed to selenium effectively accumulated selenium in their tissues but appeared unaffected by the exposure. Indeed, their body condition and antioxidant system were unaffected over the feeding trial. This was unexpected since the dietary levels used in the present study were indicated to induce sublethal effects in birds and other reptilian species. Selenium toxicity was initiated by oxidative stress leading to unusual production of oxidant species such as reactive oxygenated species. Therefore, turtles could tolerate high selenium levels due to specific trait of life (e.g. ability to deal with oxygen introduction after anoxic conditions associated with hibernation and/or diving). It is challenging to transpose results obtained from laboratory animals exposed to controlled conditions to wild individuals exposed to many environmental factors, even if species are closely related. The development life-stage further greatly affects the sensitivity of individuals to pollutant exposure. Nevertheless, the green and hawksbill marine turtle embryos could also tolerate high selenium exposure. This would contradict the risk assessment conducted in the present study but would be possible considering the food habits of both marine turtle species. These species are feeding on seagrasses and sponges which may expose the marine turtles to natural toxic compounds. Consequently, they could have developed adaptive strategies to deal with toxics in response to pressure at their foraging ground. To date, more works are needed to better understand the metabolism of selenium in turtles as well as to properly determine toxic thresholds of selenium for marine turtles. Finally, nondestructive collection techniques were tested for their suitability in assessing the turtle exposure to pollutants in both field and laboratory conditions. Keratinized tissues (i.e. carapace and skin) were proposed as promising tools and should warrant further investigations in researches aiming at the conservation of marine turtles. The present study provides several firsts such as the first baseline levels of a) pollutants in green and hawksbill marine turtles nesting in an area not investigated yet (i.e. Guadeloupe), b) OHP in the marine turtle dermis, c) OHP in hawksbill turtle eggs and d) chlordecone in marine turtle tissues. The first toxicological data on e) selenium kinetics and dynamics were further provided in turtles. [less ▲]

Detailed reference viewed: 65 (13 ULg)
See detailFrom field to laboratory studies: case of selenium in Chelonians
Dyc, Christelle ULg; Thomé, Jean-Pierre ULg; Das, Krishna ULg

in Proceedings of the 32nd Annual Symposium on Sea Turtle Biology and Conservation (2012, March)

Detailed reference viewed: 27 (10 ULg)
Peer Reviewed
See detailToxicokinetics of selenium in Chelonians: trophic exposure in Trachemys scripta scripta
Dyc, Christelle ULg; Greco, Anaïs; Das, Krishna ULg

(2011, December)

Background. Se is primordial for all development stages in oviparous species but can induce cellular damages (e.g. oxidative stress, histopathotoxicity) , embryo- and immunotoxicity (Usdi 1998; Hoffman ... [more ▼]

Background. Se is primordial for all development stages in oviparous species but can induce cellular damages (e.g. oxidative stress, histopathotoxicity) , embryo- and immunotoxicity (Usdi 1998; Hoffman 2002) , even at low concentration. Unlike birds and fishes, little is currently known on Se toxicology in reptiles, such as turtles. Most studies reported tissue burdens from field-captured or death animals but rarely provided an understanding of the dose, duration or pathway of exposure. Our present study aims to investigate toxicokinetic of Se through an in vivo and per os exposure of the yellow-bellied slider turtle Trachemys scripta scripta. Furthermore relationship between Se concentration in internal tissues (liver, kidney, muscle ) and external tissues (carapace, skin, blood) will evaluate usefulness of these last in the framework of non-invasive sampling in protected turtle species. Methodology. 160 yellow-bellied slider turtles, around four weeks old, were acquired in September 2010 and placed by pair in individual tank for a six-month acclimatization period. Lengths, as straight carapace length SCL, ranged from 1.7 to 6.4 cm. Three groups of 42 individuals each were designed. The feeding trial consisted in an eight-week supplementation period followed by a four-week depuration period. At some intervals during that time scale, six individuals per group were sacrificed and tissues were collected (carapace, scutes, skin, blood, liver, kidney, muscle) for selenium analysis. During the supplementation period, turtles were fed with diet containing 0 (control) , 23 or 47 µg.g-1 of selenium as seleno-L-methionine. During the depuration period, the remaining individuals were fed with non-supplemented control diet. Total selenium was investigated by ICPMS. Results and discussion. The Se-concentration in all collected tissues increased in a dose-dependent way over the course of the supplementation period. Se accumulation had no effect on survival, diet behavior or growth. Higher Se levels were observed in kidney, followed by muscle and blood. During the recovery period, Se levels decreased in tissues in a significantway except in blood, muscle and carapace. Blood, skin and carapace Se levels were positively correlated to those in kidney and muscle. Such relationships were also observed between liver and carapace, and blood. Results suggested a Se transfer through the food intake and the potential use of carapace and skin as relevant tools in non-invasive biomonitoring studies. [less ▲]

Detailed reference viewed: 94 (18 ULg)
See detailToxicocinétique du sélénium chez les tortues. Exposition in vivo chez Trachemys scripta scripta
Dyc, Christelle ULg

Master's dissertation (2011)

Le sélénium est un élément essentiel possédant un seuil « carence-excès » très étroit. L’étude toxicocinétique de cet élément, constitue une étape préliminaire importante à la compréhension des effets ... [more ▼]

Le sélénium est un élément essentiel possédant un seuil « carence-excès » très étroit. L’étude toxicocinétique de cet élément, constitue une étape préliminaire importante à la compréhension des effets néfastes qu’il est susceptible de causer chez les populations de reptiles. Une expérimentation impliquant 130 tortues de Floride juvéniles (Trachemys scripta scripta) a été réalisée. Le groupe contrôle a été alimenté avec une nourriture de base, alors que les deux conditions expérimentales ont reçu une nourriture supplémentée avec 64 µg/g et 134 µg/g de séléno-L-méthionine (PS), pendant huit semaines. L’accumulation du Se a été mesurée dans le foie, les reins, le muscle, la peau, les écailles, la carapace et le sang, ce qui a permis d’observer que le transfert trophique du sélénium se réalisait de manière dose-dépendante. Durant quatre semaines supplémentaires, une cinétique d’élimination du Se a également pu être observée. De plus, la concentration en Se dans le sang, dans la carapace et dans la peau est apparue fortement corrélée à celle des tissus internes. Cette observation semble intéressante pour la mise en place d’un biomonitoring peu invasif des tortues dans leur milieu naturel. Les concentrations toxiques auxquelles les tortues ont été soumises n’ont pas permis de détecter d’effets néfastes au niveau de la croissance, de la prise alimentaire et de la survie des tortues. [less ▲]

Detailed reference viewed: 86 (10 ULg)
Full Text
See detailEssential and non-essential elements in the eggs of sea turtles from the Lesser Antilles
Leroy, Céline; Dyc, Christelle ULg; Bouquegneau, Jean-Marie ULg et al

Poster (2010, October)

Detailed reference viewed: 30 (6 ULg)
Full Text
See detailOrganochlorine pollutants in sea turtles and their association with vitamin A
Dyc, Christelle ULg; Debier, Cathy; Thomé, Jean-Pierre ULg et al

Poster (2010, May)

Detailed reference viewed: 50 (15 ULg)
Full Text
See detailToxicodynamic of pollutants in poïkilotherm species
Dyc, Christelle ULg; Bouquegneau, Jean-Marie ULg; Debier, Cathy et al

Poster (2009, November 27)

Detailed reference viewed: 24 (6 ULg)
See detailToxicodynamique des polluants et des métaux traces chez les tortues marines
Dyc, Christelle ULg

Diverse speeche and writing (2009)

Detailed reference viewed: 106 (27 ULg)
See detailDevelopment of a strategy to study toxicodynamic of pollutants in spawning sea turtles
Dyc, Christelle ULg; Bouquegneau, Jean-Marie ULg; Gillet, Marie-Claire ULg et al

in Proceedings of the 29th Annual Symposium on Sea Turtle Biology and Conservation (2009)

Detailed reference viewed: 14 (2 ULg)
See detailDevelopment of a strategy to study toxicodynamic of pollutants in spawning sea turtles from French West Indies (Guadeloupe and Martinique)
Dyc, Christelle ULg; Debier, Cathy; Thomé, Jean-Pierre ULg et al

Conference (2008, November)

Sea turtles including the green turtle Chelonia mydas and the hawksbill turtle Eretmochelys imbricata are critically endangered species, facing different factors as marine pollution. There is a blatant ... [more ▼]

Sea turtles including the green turtle Chelonia mydas and the hawksbill turtle Eretmochelys imbricata are critically endangered species, facing different factors as marine pollution. There is a blatant lack of data dealing with toxicants such as metals and persistent organic pollutants (POPs) in sea turtles. We developed a strategy to apprehend levels, effects and transfer to offspring of several pollutants in sea turtles. Sampling of blood, subcutaneous tissue and eggs of 15 gravid C. mydas and E. imbricata was carried out between July and September 2008 in Martinique (Diamant’s beach) and Guadeloupe (Petite Terre and Marie-Galante). Blood was collected from the dorso-cervical sinus and subcutaneous tissue was sampled in shoulder of the spawning females using a 5 mm biopsy punch (Kai Europe GmbH, Germany). Total blood and serum were successfully taken for metal, POP and biomarker investigations. T-mercury was analyzed by DMA milestones while PCBs, DDT and chlordecone were analyzed by EDC Ni63 high performance gas chromatography HPLC. Samples of serum were analyzed for vitamins (A and E) by HPLC and for thyroid hormones (triiodothyronine and thyroxine) by radioimmunoassay. In parallel to this field study, a cell model using 3T3-L1 cell line was built up to test in vitro effects of PCBs and mercury as well as the relationship between in vitro exposure and fat mobilization. Preliminary results showed a dose-response relationship between increased Aroclor 1234 and 1252 concentrations (0.5 ppb, 1 ppb and 1.5 ppb) and adipocyte mortality (Nucleocounter). The strategy we propose here will bring further insights on levels and potential impact of pollutants on female sea turtles and their offspring. [less ▲]

Detailed reference viewed: 57 (9 ULg)
Full Text
Peer Reviewed
See detailDevelopment of a strategy to study toxicodynamic of pollutants in spawning sea turtles from the French West Indies
Dyc, Christelle ULg; Bouquegneau, Jean-Marie ULg; Gillet, Marie-Claire ULg et al

Poster (2008, October)

Sea turtles including the green turtle Chelonia mydas and the hawksbill turtle Eretmochelys imbricata are critically endangered species, facing different factors as marine pollution. There is a blatant ... [more ▼]

Sea turtles including the green turtle Chelonia mydas and the hawksbill turtle Eretmochelys imbricata are critically endangered species, facing different factors as marine pollution. There is a blatant lack of data dealing with toxicants such as metals and persistent organic pollutants (POPs) in sea turtles. We developed a strategy to apprehend levels, effects and transfer to offspring of several pollutants in sea turtles. Sampling of blood, subcutaneous tissue and eggs of 15 gravid C. mydas and E. imbricata was carried out between July and September 2008 in Martinique (Diamant’s beach) and Guadeloupe (Petite Terre and Marie-Galante). Blood was collected from the dorso-cervical sinus and subcutaneous tissue was sampled in shoulder of the spawning females using a 5 mm biopsy punch (Kai Europe GmbH, Germany). Total blood and serum were successfully taken for metal, POP and biomarker investigations. T-mercury was analyzed by DMA milestones while PCBs, DDT and chlordecone were analyzed by EDC Ni63 high performance gas chromatography HPLC. Samples of serum were analyzed for vitamins (A and E) by HPLC and for thyroid hormones (triiodothyronine and thyroxine) by radioimmunoassay. In parallel to this field study, a cell model using 3T3-L1 cell line was built up to test in vitro effects of PCBs and mercury as well as the relationship between in vitro exposure and fat mobilization. Preliminary results showed a dose-response relationship between increased Aroclor 1234 and 1252 concentrations (0.5 ppb, 1 ppb and 1.5 ppb) and adipocyte mortality (Nucleocounter). The strategy we propose here will bring further insights on levels and potential impact of pollutants on female sea turtles and their offspring. [less ▲]

Detailed reference viewed: 63 (11 ULg)
See detailToxycodynamiques des polluants et des métaux traces chez Chelonia mydas et Eretmochelys imbricata
Dyc, Christelle ULg

Scientific conference (2008, September 12)

Detailed reference viewed: 33 (8 ULg)