References of "Duyck, J"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNumerical simulation of bone regeneration in a bone chamber.
Geris, Liesbet ULg; Vandamme, K.; Naert, I. et al

in Journal of Dental Research (2009), 88(2), 158-63

While mathematical models are able to capture essential aspects of biological processes like fracture healing and distraction osteogenesis, their predictive capacity in peri-implant osteogenesis remains ... [more ▼]

While mathematical models are able to capture essential aspects of biological processes like fracture healing and distraction osteogenesis, their predictive capacity in peri-implant osteogenesis remains uninvestigated. We tested the hypothesis that a mechano-regulatory model has the potential to predict bone regeneration around implants. In an in vivo bone chamber set-up allowing for controlled implant loading (up to 90 microm axial displacement), bone tissue formation was simulated and compared qualitatively and quantitatively with histology. Furthermore, the model was applied to simulate excessive loading conditions. Corresponding to literature data, implant displacement magnitudes larger than 90 microm predicted the formation of fibrous tissue encapsulation of the implant. In contradiction to findings in orthopedic implant osseointegration, implant displacement frequencies higher than 1 Hz did not favor the formation of peri-implant bone in the chamber. Additional bone chamber experiments are needed to test these numerical predictions. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Peer Reviewed
See detailA coupled mechanobioregulatory model for the simulation of peri-implant bone formation in an in vivo bone chamber
Geris, Liesbet ULg; Vandamme, K.; Duyck, J. et al

in Proceedings of the second thematic workshop of the European Society of Biomechanics on Finite Element modelling in Biomechanis and Mechanobiology (2007, August)

Detailed reference viewed: 11 (0 ULg)
Peer Reviewed
See detailInfluence of immediate loading and implant design on bone formation
Vandamme, K.; Naert, Ignace; Geris, Liesbet ULg et al

in Proceedings of the 85th General Session & Exhibition of the IADR (2007)

Detailed reference viewed: 2 (0 ULg)
Full Text
Peer Reviewed
See detailNumerical simulation of tissue differentiation around loaded titanium implants in a bone chamber.
Geris, Liesbet ULg; Andreykiv, A.; Van Oosterwyck, H. et al

in Journal of Biomechanics (2004), 37(5), 763-9

The application of a bone chamber provides a controlled environment for the study of tissue differentiation and bone adaptation. The influence of different mechanical and biological factors on the ... [more ▼]

The application of a bone chamber provides a controlled environment for the study of tissue differentiation and bone adaptation. The influence of different mechanical and biological factors on the processes can be measured experimentally. The goal of the present work is to numerically model the process of peri-implant tissue differentiation inside a bone chamber, placed in a rabbit tibia. 2D and 3D models were created of the tissue inside the chamber. A number of loading conditions, corresponding to those applied in the rabbit experiments, were simulated. Fluid velocity and maximal distortional strain were considered as the stimuli that guide the differentiation process of mesenchymal cells into fibroblasts, chondrocytes and osteoblasts. Mesenchymal cells migrate through the chamber from the perforations in the chamber wall. This process is modelled by the diffusion equation. The predicted tissue phenotypes as well as the process of tissue ingrowth into the chamber show a qualitative agreement with the results of the rabbit experiments. Due to the limited number of animal experiments (four) and the observed inter-animal differences, no quantitative comparison could be made. These results however are a strong indication of the feasibility of the implemented theory to predict the mechano-regulation of the differentiation process inside the bone chamber. [less ▲]

Detailed reference viewed: 9 (0 ULg)