References of "Duval, Valérie"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA peptidoglycan fragment triggers beta-lactam resistance in Bacillus licheniformis.
Amoroso, Ana Maria ULg; Boudet, Julien; Berzigotti, Stephanie et al

in PLoS Pathogens (2012), 8(3), 1002571

To resist to beta-lactam antibiotics Eubacteria either constitutively synthesize a beta-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence ... [more ▼]

To resist to beta-lactam antibiotics Eubacteria either constitutively synthesize a beta-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence of antibiotic outside the cell. In Bacillus licheniformis and Staphylococcus aureus, a membrane-bound penicillin receptor (BlaR/MecR) detects the presence of beta-lactam and launches a cytoplasmic signal leading to the inactivation of BlaI/MecI repressor, and the synthesis of a beta-lactamase or a low affinity target. We identified a dipeptide, resulting from the peptidoglycan turnover and present in bacterial cytoplasm, which is able to directly bind to the BlaI/MecI repressor and to destabilize the BlaI/MecI-DNA complex. We propose a general model, in which the acylation of BlaR/MecR receptor and the cellular stress induced by the antibiotic, are both necessary to generate a cell wall-derived coactivator responsible for the expression of an inducible beta-lactam-resistance factor. The new model proposed confirms and emphasizes the role of peptidoglycan degradation fragments in bacterial cell regulation. [less ▲]

Detailed reference viewed: 19 (2 ULg)
Full Text
Peer Reviewed
See detailBackbone 1H, 13C, and 15N resonance assignments for lysozyme from bacteriophage lambda.
Di Paolo, Alexandre ULg; Duval, Valerie; Matagne, André ULg et al

in Biomolecular NMR assignments (2010), 4(1), 111-4

Lysozyme from lambda bacteriophage (lambda lysozyme) is an 18 kDa globular protein displaying some of the structural features common to all lysozymes; in particular, lambda lysozyme consists of two ... [more ▼]

Lysozyme from lambda bacteriophage (lambda lysozyme) is an 18 kDa globular protein displaying some of the structural features common to all lysozymes; in particular, lambda lysozyme consists of two structural domains connected by a helix, and has its catalytic residues located at the interface between these two domains. An interesting feature of lambda lysozyme, when compared to the well-characterised hen egg-white lysozyme, is its lack of disulfide bridges; this makes lambda lysozyme an interesting system for studies of protein folding. A comparison of the folding properties of lambda lysozyme and hen lysozyme will provide important insights into the role that disulfide bonds play in the refolding pathway of the latter protein. Here we report the (1)H, (13)C and (15)N backbone resonance assignments for lambda lysozyme by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for detailed investigation of the refolding pathway using pulse-labelling hydrogen/deuterium exchange experiments monitored by NMR. [less ▲]

Detailed reference viewed: 37 (12 ULg)
Full Text
Peer Reviewed
See detailLarge ring 1,3-bridged 2-azetidinones: experimental and theoretical studies
Urbach, Allan; Dive, Georges ULg; Tinant, Bernard et al

in European Journal of Medicinal Chemistry (2009), 44

Detailed reference viewed: 23 (7 ULg)
Full Text
Peer Reviewed
See detailActivities of ceftobiprole and other cephalosporins against extracellular and intracellular (THP-1 macrophages and keratinocytes) forms of methicillin-susceptible and methicillin-resistant Staphylococcus aureus.
Lemaire, Sandrine; Glupczynski, Youri; Duval, Valerie et al

in Antimicrobial Agents and Chemotherapy (2009), 53(6), 2289-97

Staphylococcus aureus is an opportunistic intracellular organism. Although they poorly accumulate in eukaryotic cells, beta-lactams show activity against intracellular methicillin (methicillin ... [more ▼]

Staphylococcus aureus is an opportunistic intracellular organism. Although they poorly accumulate in eukaryotic cells, beta-lactams show activity against intracellular methicillin (methicillin)-susceptible S. aureus (MSSA) if the exposure times and the drug concentrations are sufficient. Intraphagocytic methicillin-resistant S. aureus (MRSA) strains are susceptible to penicillins and carbapenems because the acidic pH favors the acylation of PBP 2a by these beta-lactams through pH-induced conformational changes. The intracellular activity (THP-1 macrophages and keratinocytes) of ceftobiprole, which shows almost similar in vitro activities against MRSA and MSSA in broth, was examined against a panel of hospital-acquired and community-acquired MRSA strains (MICs, 0.5 to 2.0 mg/liter at pH 7.4 and 0.25 to 1.0 mg/liter at pH 5.5) and was compared with its activity against MSSA isolates. The key pharmacological descriptors {relative maximal efficacy (E(max)), relative potency (the concentration causing a reduction of the inoculum halfway between E(0) and E(max) [EC(50)]), and static concentration (C(s))} were measured. All strains showed sigmoidal dose-responses, with E(max) being about a 1 log(10) CFU decrease from the postphagocytosis inoculum, and EC(50) and C(s) being 0.2 to 0.3x and 0.6 to 0.9x the MIC, respectively. Ceftobiprole effectively competed with Bocillin FL (a fluorescent derivative of penicillin V) for binding to PBP 2a at both pH 5.5 and pH 7.4. In contrast, cephalexin, cefuroxime, cefoxitin, or ceftriaxone (i) were less potent in PBP 2a competitive binding assays, (ii) showed only partial restoration of the activity against MRSA in broth at acidic pH, and (iii) were collectively less effective against MRSA in THP-1 macrophages and were ineffective in keratinocytes. The improved activity of ceftobiprole toward intracellular MRSA compared with the activities of conventional cephalosporins can be explained, at least in part, by its greater ability to bind to PBP 2a not only at neutral but also at acidic pH. [less ▲]

Detailed reference viewed: 41 (3 ULg)
Full Text
Peer Reviewed
See detailThe kinetic properties of the carboxy terminal domain of the Bacillus licheniformis 749/I BlaR penicillin-receptor shed a new light on the derepression of beta-lactamase synthesis
Duval, Valérie; Swinnen, Marc; Lepage, Sophie et al

in Molecular Microbiology (2003), 48(6), 1553-1564

To study the properties of the BlaR penicillin-receptor involved in the induction of the Bacillus licheniformis beta-lactamase, the water-soluble carboxy terminal domain of the protein (BlaR-CTD) was ... [more ▼]

To study the properties of the BlaR penicillin-receptor involved in the induction of the Bacillus licheniformis beta-lactamase, the water-soluble carboxy terminal domain of the protein (BlaR-CTD) was overproduced in the periplasm of Escherichia coli JM105 and purified to protein homogeneity. Its interactions with various beta-lactam antibiotics were studied. The second-order acylation rate constants k(2)/K' ranged from 0.0017 to more than 1 muM(-1) s(-1) and the deacylation rate constants were lower than 4x10(-5) s(-1) . These values imply a rapid to very rapid formation of a stable acylated adduct. BlaR-CTD is thus one of the most sensitive penicillin-binding proteins presently described. In the light of these results, the kinetics of beta-lactamase induction in Bacillus licheniformis were re-examined. When starting with a rather high cell density, a good beta-lactamase substrate such as benzylpenicillin is too sensitive to beta-lactamase-mediated hydrolysis to allow full induction. By contrast, a poor beta-lactamase substrate (7-aminocephalosporanic acid) can fully derepress beta-lactamase expression under conditions where interference of the antibiotic with cell growth is observed. These results suggest that acylation of the penicillin receptor is a necessary, but not sufficient, condition for full induction. [less ▲]

Detailed reference viewed: 45 (11 ULg)
Full Text
Peer Reviewed
See detailAdvantages and drawbacks of nanospray for studying noncovalent protein-DNA complexes by mass spectrometry
Gabelica, Valérie ULg; Vreuls, Christelle ULg; Filée, Patrice ULg et al

in Rapid Communications in Mass Spectrometry : RCM (2002), 16(18), 1723-1728

The noncovalent complexes between the BlaI protein dimer (wild-type and GM2 mutant) and its double-stranded DNA operator were studied by nanospray mass spectrometry and tandem mass spectrometry (MS/MS ... [more ▼]

The noncovalent complexes between the BlaI protein dimer (wild-type and GM2 mutant) and its double-stranded DNA operator were studied by nanospray mass spectrometry and tandem mass spectrometry (MS/MS). Reproducibility problems in the nanospray single-stage mass spectra are emphasized. The relative intensities depend greatly on the shape of the capillary tip and on the capillary-cone distance. This results in difficulties in assessing the relative stabilities of the complexes simply from MS' spectra of protein-DNA mixtures. Competition experiments using MS/MS are a better approach to determine relative binding affinities. A competition between histidine-tagged BlaIWT (BlaIWTHis) and the GM2 mutant revealed that the two proteins have similar affinities for the DNA operator, and that they co-dimerize to form heterocomplexes. The low sample consumption of nanospray allows MS/MS spectra to be recorded at different collision energies for different charge states with 1 muL of sample. The MS/MS experiments on the dimers reveal that the GM2 dimer is more kinetically stable in the gas phase than the wild-type dimer. The MS/MS experiments on the complexes shows that the two proteins require the same collision energy to dissociate from the complex. This indicates that the rate-limiting step in the monomer loss from the protein-DNA complex arises from the breaking of the protein-DNA interface rather than the protein-protein interface. The dissociation of the protein-DNA complex proceeds by the loss of a highly charged monomer (carrying about two-thirds of the total charge and one-third of the total mass). MS/MS experiments on a heterocomplex also show that the two proteins BlaIWTHis and BlaIGM2 have slightly different charge distributions in the fragments. This emphasizes the need for better understanding the dissociation mechanisms of biomolecular complexes. [less ▲]

Detailed reference viewed: 72 (11 ULg)