References of "Dupret, Marc-Antoine"
     in
Bookmark and Share    
Full Text
See detailEnergetical aspects of solar-like oscillations in red giants
Grosjean, Mathieu ULg; Dupret, Marc-Antoine ULg; Belkacem, Kevin et al

in Proceedings IAU Symposium No. 301, 2013 (in press)

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailThe puzzling new class of variable stars in NGC 3766 : old friend pulsators?
Salmon, Sébastien ULg; Montalban Iglesias, Josefa ULg; Reese, Daniel et al

in Astronomy and Astrophysics (2014)

The recent variability survey of the NGC 3766 cluster revealed a considerable number of periodic variable stars in a region of the H-R diagram where no pulsation is expected. This region lies between the ... [more ▼]

The recent variability survey of the NGC 3766 cluster revealed a considerable number of periodic variable stars in a region of the H-R diagram where no pulsation is expected. This region lies between the instability strips of the delta Scuti and SPB stars. Moreover the periods of the new phenomenon, P~0.1-0.7 d, do not allow to associate it a priori to either of these two types of pulsations. Stars in the NGC 3766 cluster are known as fast rotators with rotational velocities typically larger than half of their critical velocity. Rotation can affect both the geometrical properties and period domain of pulsations. It also alters the apparent stellar luminosity through gravity darkening, effect seldom taken considered in theoretical studies of the rotation-pulsation interaction. We explore if both of these effects are able to deliver a consistent interpretation for the observed properties of the "new variables" in NGC 3766: explaining their presence outside the known instability strips and their variability periods. We carry out an instability analysis of SPB models within the framework of the Traditional Approximation of Rotation and study the visibility of modes according to the angle of view and rotation. We also check how gravity darkening affects the effective temperature and luminosity of stellar models for different angles of view and rotation velocities. At the red (cold) border of the instability strip, prograde sectoral modes are preferentially excited and their visibilities are maximum when seen equator-on. Furthermore low-mass SPB models seen equator-on can appear in the gap between non-rotating SPB and delta Scuti stars due to gravity darkening. In that case, periods of these most visible modes are shifted to the 0.2-0.5 d range due to the effects of the Coriolis force. We hence suggest that the new variable stars observed in NGC 3766 are actually fast rotating SPB pulsators. [less ▲]

Detailed reference viewed: 8 (4 ULg)
See detailDifferential Seismic Modeling of Stars
Ozel, N.; Mosser, B.; Dupret, Marc-Antoine ULg et al

in Astronomical Society of the Pacific Conference Series (2013, December 01)

CoRoT (Convection Rotation and planetary Transits) observations provide the opportunity to study a large sample of stars ranging from the Main Sequence (MS) to the Red Giant Branch. With the large ... [more ▼]

CoRoT (Convection Rotation and planetary Transits) observations provide the opportunity to study a large sample of stars ranging from the Main Sequence (MS) to the Red Giant Branch. With the large increase in the number of stars showing solar-like oscillations, we intend to extract as much information as possible from a low signal-to-noise ratio (SNR) oscillation spectrum, benefiting from comparison with a reference star having similar seismic and fundamental parameters. We propose a differential method to determine stellar properties of solar-like oscillations which we call “differential seismology of stellar twins”. [less ▲]

Detailed reference viewed: 6 (0 ULg)
See detailNon-Perturbative Effect of Rotation on Dipolar Mixed-Modes in Red Giants
Ouazzani, R.-M.; Goupil, M.-J.; Dupret, Marc-Antoine ULg et al

in Astronomical Society of the Pacific Conference Series (2013, December 01)

The space missions CoRoT (Convection Rotation and Planetary Transits) and Kepler provide high quality data that allows the transport of angular momentum in stars to be investigated by the seismic ... [more ▼]

The space missions CoRoT (Convection Rotation and Planetary Transits) and Kepler provide high quality data that allows the transport of angular momentum in stars to be investigated by the seismic determination of the internal rotation profile. In a former study (Ouazzani et al. 2013b) we test the validity of seismic diagnostics for red giant rotation that are based on a perturbative method. Our aim here is to investigate oscillation spectra when that validity no longer holds. We use a non-perturbative approach implemented in the Adiabatic Code of Oscillations including Rotation (ACOR code) (Ouazzani et al. 2012) that accounts for the eff [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
See detailEvolution of the theoretical power spectrum of solar-like oscillations along the ascending phase on the red giant branch.
Grosjean, Mathieu ULg; Dupret, Marc-Antoine ULg; Belkacem, Kevin et al

in Astronomical Society of the Pacific Conference Series (2013, December), 479

CoRoT and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. An important question comes from the observation of mixed ... [more ▼]

CoRoT and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. An important question comes from the observation of mixed modes : When during the star’s ascension on the RGB are mixed-modes more likely to be detectable ? We follow the evolution of a star on the RGB and investigate the effect of its ascension on theoretical power spectrum. Equilibrium models (computed with the code ATON) represent four different stages of a star on the RGB. The mass of the star (1.5M") is in the typical mass range of stars observed by CoRoT and Kepler. We used a non-radial non-adiabatic code to compute the theoretical solar-like oscillations of these models. An important output of these calculations is the theoretical lifetimes of the modes. Then we computed the oscillation amplitudes through a stochastic excitation model. These computations allow us to draw theoretical power spectrum and discuss the possibility to observe mixed-modes at different evolutionary stages on the RGB. We found that structure modifications in a star ascending the RGB have an important impact on theoretical power spectrum of solar-like oscillations. Efficiencies of trapping and lifetimes of mixed modes are indeed strongly affected by this evolution. [less ▲]

Detailed reference viewed: 10 (2 ULg)
Full Text
Peer Reviewed
See detailThe instability strip of ZZ Ceti white dwarfs and its extension to the extremely low mass pulsators
Van Grootel, Valérie ULg; Fontaine, Gilles; Brassard, Pierre et al

in Astronomical Society of the Pacific Conference Series (2013, December), 479

The determination of the location of the theoretical ZZ Ceti instability strip in the log g − Teff diagram has remained a challenge over the years, due to the lack of a suitable treatment for convection ... [more ▼]

The determination of the location of the theoretical ZZ Ceti instability strip in the log g − Teff diagram has remained a challenge over the years, due to the lack of a suitable treatment for convection in these stars. We report here a detailed stability survey over the whole ZZ Ceti regime, including the very low masses where three pulsators have recently been found. We computed to this aim 29 evolutionary sequences of DA models with various masses and chemical layering. These models are characterized by the so-called ML2/α=1.0 convective efficiency and take into account the important feedback effect of convection on the atmospheric structure. We pulsated these models with the Liege nonadiabatic pulsation code MAD, which is the only one to conveniently incorporate a full time-dependent convection treatment and, thus, provides the best available description of the blue edge of the instability strip. On the other hand, given the failure of all nonadiabatic codes to account properly for the red edge of the strip, including MAD, we tested the idea that the red edge is due to energy leakage through the atmosphere. Using this approach, we found that our theoretical ZZ Ceti instability strip accounts remarkably well for the boundaries of the empirical strip. [less ▲]

Detailed reference viewed: 19 (3 ULg)
Full Text
Peer Reviewed
See detailDifferential asteroseismic study of seismic twins observed by CoRoT. Comparison of HD 175272 with HD 181420
Ozel, N.; Mosser, B.; Dupret, Marc-Antoine ULg et al

in Astronomy and Astrophysics (2013), 558

Context. The CoRoT short asteroseismic runs give us the opportunity to observe a large variety of late-type stars through their solar-like oscillations. We report the observation and modeling of the F5V ... [more ▼]

Context. The CoRoT short asteroseismic runs give us the opportunity to observe a large variety of late-type stars through their solar-like oscillations. We report the observation and modeling of the F5V star HD 175272. <BR /> Aims: Our aim is to define a method for extracting as much information as possible from a noisy oscillation spectrum. <BR /> Methods: We followed a differential approach that consists of using a well-known star as a reference to characterize another star. We used classical tools such as the envelope autocorrelation function to derive the global seismic parameters of the star. We compared HD 175272 with HD 181420 through a linear approach, because they appear to be asteroseismic twins. <BR /> Results: The comparison with the reference star enables us to substantially enhance the scientific output for HD 175272. First, we determined its global characteristics through a detailed seismic analysis of HD 181420. Second, with our differential approach, we measured the difference of mass, radius and age between HD 175272 and HD 181420. <BR /> Conclusions: We have developed a general method able to derive asteroseismic constraints on a star even in case of low-quality data. This method can be applied to stars with interesting properties but low signal-to-noise ratio oscillation spectrum, such as stars hosting an exoplanet or members of a binary system. The CoRoT space mission, launched on 2006 December 27, was developed and is operated by the CNES, with participation of the Science Programs of ESA, ESAs RSSD, Austria, Belgium, Brazil, Germany and Spain. [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
See detailEnergetical aspects of solar-like oscillations in red giants
Grosjean, Mathieu ULg; Dupret, Marc-Antoine ULg

Conference (2013, August 23)

CoRoT and Kepler observations of red giants reveal a large variety of spectra of non- radial solar- like oscillations. Up to now we understood pretty well the frequency patterns for the different global ... [more ▼]

CoRoT and Kepler observations of red giants reveal a large variety of spectra of non- radial solar- like oscillations. Up to now we understood pretty well the frequency patterns for the different global properties or different evolutionary stages of the stars. Here we are interested in the theoretical predictions for the two other components of a power spectra (the linewitdths and the heights). The study of energetic aspects of these oscillations is of great importance to predict the peak parameters in the power spectrum. I will discuss under which circumstances mixed modes are detectable for a large variety of red-giant stellar models, with emphasis on the effect of the evolutionary status of the star along the red-giant branch, for a wide range of stellar masses (from 1 to 2M⊙ ) on theoretical power spectra. [less ▲]

Detailed reference viewed: 20 (4 ULg)
Full Text
Peer Reviewed
See detailNon-perturbative effect of rotation on dipolar mixed modes in red giant stars
Ouazzani, R.-M.; Goupil, M. J.; Dupret, Marc-Antoine ULg et al

in Astronomy and Astrophysics (2013), 554

Context. The space missions CoRoT and Kepler provide high-quality data that allow us to test the transport of angular momentum in stars by the seismic determination of the internal rotation profile. <BR ... [more ▼]

Context. The space missions CoRoT and Kepler provide high-quality data that allow us to test the transport of angular momentum in stars by the seismic determination of the internal rotation profile. <BR /> Aims: Our aim is to test the validity of seismic diagnostics for red giant rotation that are based on a perturbative method and to investigate the oscillation spectra when the validity does not hold. <BR /> Methods: We use a non-perturbative approach implemented in the ACOR code that accounts for the effect of rotation on pulsations and solves the pulsation eigenproblem directly for dipolar oscillation modes. <BR /> Results: We find that the limit of the perturbation to first order can be expressed in terms of the rotational splitting compared to the frequency separation between consecutive dipolar modes. Above this limit, non-perturbative computations are necessary, but only one term in the spectral expansion of modes is sufficient as long as the core rotation rate remains significantly smaller than the pulsation frequencies. Each family of modes with different azimuthal symmetry, m, has to be considered separately. In particular, in case of rapid core rotation, the density of the spectrum differs significantly from one m-family of modes to another, so that the differences between the period spacings associated with each m-family can constitute a promising guideline toward a proper seismic diagnostic for rotation. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailTesting Convective-core Overshooting Using Period Spacings of Dipole Modes in Red Giants
Montalbán, J.; Miglio, A.; Noels-Grötsch, Arlette ULg et al

in Astrophysical Journal (2013), 766

Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We ... [more ▼]

Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We propose a test of the extension of extra-mixing in two relevant evolutionary phases based on period spacing (ΔP) of solar-like oscillating giants. From stellar models and their corresponding adiabatic frequencies (respectively, computed with ATON and LOSC codes), we provide the first predictions of the observable ΔP for stars in the red giant branch and in the red clump (RC). We find (1) a clear correlation between ΔP and the mass of the helium core (M [SUB]He[/SUB]); the latter in intermediate-mass stars depends on the MS overshooting, and hence it can be used to set constraints on extra-mixing during MS when coupled with chemical composition; and (2) a linear dependence of the average value of the asymptotic period spacing (langΔPrang[SUB] a [/SUB]) on the size of the convective core during the He-B phase. A first comparison with the inferred asymptotic period spacing for Kepler RC stars also suggests the need for extra-mixing during this phase, as evinced from other observational facts. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
See detailNon-radial, non-adiabatic solar-like oscillations in RGB and HB stars
Grosjean, Mathieu ULg; Dupret, Marc-Antoine ULg; Belkacem, K. et al

in EPJ Web of Conferences (2013, March 01), 43

CoRoT and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. We compare the theoretical spectrum of two red giants in ... [more ▼]

CoRoT and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. We compare the theoretical spectrum of two red giants in the same region of the HR diagram but in different evolutionary phases. We present here our first results on the inertia, lifetimes and amplitudes of the oscillations and discuss the differences between the two stars. [less ▲]

Detailed reference viewed: 17 (9 ULg)
Full Text
See detailMode lifetime and associated scaling relations
Belkacem, K.; Appourchaux, T.; Baudin, F. et al

in EPJ Web of Conferences (2013, March 01), 43

Thanks to the CoRoT and Kepler spacecrafts, scaling relations (linking seismic indices and global stellar parameters) are becoming the cornerstone of ensemble asteroseismology. Among them, the relation ... [more ▼]

Thanks to the CoRoT and Kepler spacecrafts, scaling relations (linking seismic indices and global stellar parameters) are becoming the cornerstone of ensemble asteroseismology. Among them, the relation between the cut-off frequency and the frequency of the maximum in the power spectrum of solar-like pulsators as well as the relation between mode lifetime and the effective temperature remain poorly understood. However, a solid theoretical background is essential to assess the accuracy of those relations and subsequently of the derived stellar parameters. We will thus present recent advances on the understanding of the underlying mechanisms governing those relations and show that the physics of mode lifetime (thus of mode damping) plays a major role. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
See detailRed giants rotational splittings
Ouazzani, R. M.; Goupil, M. J.; Dupret, Marc-Antoine ULg et al

in EPJ Web of Conferences (2013, March 01), 43

The space missions CoRoT and Kepler provide high quality data that allow to test the transport of angular momentum in stars by the seismic determination of the internal rotation profile. Our aim is to ... [more ▼]

The space missions CoRoT and Kepler provide high quality data that allow to test the transport of angular momentum in stars by the seismic determination of the internal rotation profile. Our aim is to test the validity of the seismic diagnostics for red giant rotation that are based on a perturbative method and to investigate the oscillation spectra when the validity does not hold. We use a non-perturbative approach implemented in the ACOR code [1] that accounts for the effect of rotation on pulsations, and solves the pulsations eigenproblem directly for dipolar oscillation modes. We find that the limit of the perturbation to first order can be expressed in terms of the core rotation and the period separation between consecutive dipolar modes. Above this limit, each family of modes with different azimuthal symmetry m, has to be considered separately. For rapidly rotating red giants, new seismic diagnostics can be found for rotation by exploiting the differences between the period spacings associated with each m-family of modes. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
See detailAmplitudes of solar-like oscillations in red giants: Departures from the quasi-adiabatic approximation
Samadi, R.; Belkacem, K.; Dupret, Marc-Antoine ULg et al

in European Physical Journal Web of Conferences (2013, March 01), 43

CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not ... [more ▼]

CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailEffects of the Coriolis force on high-order g modes in γ Doradus stars
Bouabid, M.-P.; Dupret, Marc-Antoine ULg; Salmon, Sébastien ULg et al

in Monthly Notices of the Royal Astronomical Society (2013), 429(3), 2500

γ Doradus stars pulsate with high-order gravity modes having typical frequencies which can be comparable to or higher than their rotation frequencies. Therefore, rotation has a non-negligible effect on ... [more ▼]

γ Doradus stars pulsate with high-order gravity modes having typical frequencies which can be comparable to or higher than their rotation frequencies. Therefore, rotation has a non-negligible effect on their oscillation properties. To explore the rotation-pulsation coupling in γ Dor stars, we perform a non-adiabatic study including the traditional approximation of rotation on a grid of spherical stellar models covering the mass range 1.4 < M[SUB]*[/SUB] < 2.1 M[SUB]&sun;[/SUB]. This approximation allows us to treat the effect of the Coriolis force on the frequencies and the stability of high-order g modes. The effect of the Coriolis force depends on the kind of mode considered (prograde sectoral or not) and increases with their periods. As a consequence, we first find that the period spacing between modes is no longer periodically oscillating around a constant value. Secondly, we show that the frequency gap (5-15 cycles day[SUP]-1[/SUP]) arising from stable modes between γ Dor-type high-order g modes and δ Scuti-type modes can be easily filled by g-mode frequencies shifted to higher values by the rotation. Thirdly, we analyse the combined effect of diffusive mixing and the Coriolis force on the period spacings. And finally, we predict a slight broadening of the γ Dor instability strip. [less ▲]

Detailed reference viewed: 25 (9 ULg)
Full Text
Peer Reviewed
See detailThe Newly Discovered Pulsating Low Mass White Dwarfs: An Extension of the ZZ Ceti Instability Strip
Van Grootel, Valérie ULg; Fontaine, Gilles; Brassard, Pierre et al

in Astrophysical Journal (2013), 762

In light of the exciting discovery of g-mode pulsations in extremely low-mass, He-core DA white dwarfs, we report on the results of a detailed stability survey aimed at explaining the existence of these ... [more ▼]

In light of the exciting discovery of g-mode pulsations in extremely low-mass, He-core DA white dwarfs, we report on the results of a detailed stability survey aimed at explaining the existence of these new pulsators as well as their location in the spectroscopic Hertzsprung–Russell diagram. To this aim, we calculated some 28 evolutionary sequences of DA models with various masses and chemical layering. These models are characterized by the so-called ML2/α = 1.0 convective efficiency and take into account the important feedback effect of convection on the atmospheric structure. We pulsated the models with the nonadiabatic code MAD, which incorporates a detailed treatment of time-dependent convection. On the other hand, given the failure of all nonadiabatic codes, including MAD, to account properly for the red edge of the strip, we resurrect the idea that the red edge is due to energy leakage through the atmosphere. We thus estimated the location of that edge by requiring that the thermal timescale in the driving region—located at the base of the H convection zone—be equal to the critical period beyond which l = 1 g-modes cease to exist. Using this approach, we find that our theoretical ZZ Ceti instability strip accounts remarkably well for the boundaries of the empirical strip, including the low-gravity, low-temperature regime where the three new pulsators are found. We also account for the relatively long periods observed in these stars, and thus conclude that they are true ZZ Ceti stars, but with low masses. [less ▲]

Detailed reference viewed: 15 (4 ULg)
Full Text
See detailTowards Precise Asteroseismology of Solar-Like Stars
Grigahcène, A.; Dupret, Marc-Antoine ULg; Sousa, S. G. et al

in Astrophysics and Space Science Proceedings series (2013), 31

Adiabatic modeling of solar-like oscillations cannot exceed a certain level of precision for fitting individual frequencies. This is known as the problem of near-surface effects on the mode physics. We ... [more ▼]

Adiabatic modeling of solar-like oscillations cannot exceed a certain level of precision for fitting individual frequencies. This is known as the problem of near-surface effects on the mode physics. We present a theoretical study which addresses the problem of frequency precision in non-adiabatic models using a time-dependent convection treatment. We find that the number of acceptable model solutions is significantly reduced and more precise constraints can be imposed on the models. Results obtained for a specific star (β Hydri) lead to very good agreement with both global and local seismic observables. This indicates that the accuracy of model fitting to seismic data is greatly improved when a more complete description of the interaction between convection and pulsation is taken into account. [less ▲]

Detailed reference viewed: 5 (0 ULg)
Full Text
See detailSuccessful Asteroseismology for a Better Characterization of the Exoplanet HAT-P-7b
Oshagh, M.; Grigahcène, A.; Benomar, O. et al

in Astrophysics and Space Science Proceedings (2013), 31

It is well known that asteroseismology is the unique technique permitting the study of the internal structure of pulsating stars using their pulsational frequencies, which is per se very important. It ... [more ▼]

It is well known that asteroseismology is the unique technique permitting the study of the internal structure of pulsating stars using their pulsational frequencies, which is per se very important. It acquires an additional value when the star turns out to be a planet host. In this case, the asteroseismic study output may be a very important input for the study of the planetary system. With this in mind, we use the large time-span of the Kepler public data obtained for the star system HAT-P-7, first to perform an asteroseismic study of the pulsating star using Time-Dependent-Convection (TDC) models. Secondly, we make a revision of the planet properties in the light of the asteroseismic study. [less ▲]

Detailed reference viewed: 5 (2 ULg)
Full Text
Peer Reviewed
See detailPulsations of rapidly rotating stars. I. The ACOR numerical code
Ouazzani, Rhita-Maria ULg; Dupret, Marc-Antoine ULg; Reese, Daniel ULg

in Astronomy and Astrophysics (2012), 547

Context. Very high precision seismic space missions such as CoRoT and Kepler provide the means of testing the modeling of transport processes in stellar interiors. For some stars, such as solar-like and ... [more ▼]

Context. Very high precision seismic space missions such as CoRoT and Kepler provide the means of testing the modeling of transport processes in stellar interiors. For some stars, such as solar-like and red giant stars, a rotational splitting is measured. However, to fully exploit these splittings and constrain the rotation profile, one needs to be able to calculate them accurately. For some other stars, such as δ Scuti and Be stars, for instance, the observed pulsation spectra are modified by rotation to such an extent that a perturbative treatment of the effects of rotation is no longer valid. <BR /> Aims: We present here a new two-dimensional non-perturbative code called ACOR (adiabatic code of oscillation including rotation) that allows us to compute adiabatic non-radial pulsations of rotating stars without making any assumptions on the sphericity of the star, the fluid properties (i.e., baroclinicity) or the rotation profile. <BR /> Methods: The 2D non-perturbative calculations fully take into account the centrifugal distortion of the star and include the full influence of the Coriolis acceleration. The numerical method is based on a spectral approach for the angular part of the modes and a fourth-order finite differences approach for the radial part. <BR /> Results: We test and evaluate the accuracy of the calculations by comparing them with those coming from the TOP (two-dimensional oscillation program) for the same polytropic models. We illustrate the effects of rapid rotation on stellar pulsations through the phenomenon of avoided crossings. <BR /> Conclusions: As shown by the comparison with the TOP for simple models, the code is stable, and gives accurate results up to near-critical rotation rates. [less ▲]

Detailed reference viewed: 20 (5 ULg)
Full Text
See detailEvolution of the theoretical power spectrum of solar-like oscillations along the ascending phase on the red giant branch.
Grosjean, Mathieu ULg; Montalban Iglesias, Josefa ULg; Samadi, Reza et al

Poster (2012, November)

CoRoT and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. An important question comes from the observation of mixed ... [more ▼]

CoRoT and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. An important question comes from the observation of mixed modes : When during the star’s ascension on the RGB are mixed-modes more likely to be detectable ? We follow the evolution of a star on the RGB and investigate the effect of its ascension on theoretical power spectrum. Equilibrium models (computed with the code ATON) represent four different stages of a star on the RGB. The mass of the star (1.5M") is in the typical mass range of stars observed by CoRoT and Kepler. We used a non-radial non-adiabatic code to compute the theoretical solar-like oscillations of these models. An important output of these calculations is the theoretical lifetimes of the modes. Then we computed the oscillation amplitudes through a stochastic excitation model. These computations allow us to draw theoretical power spectrum and discuss the possibility to observe mixed-modes at different evolutionary stages on the RGB. We found that structure modifications in a star ascending the RGB have an important impact on theoretical power spectrum of solar-like oscillations. Efficiencies of trapping and lifetimes of mixed modes are indeed strongly affected by this evolution. [less ▲]

Detailed reference viewed: 7 (2 ULg)