References of "Du Jardin, Patrick"
     in
Bookmark and Share    
Peer Reviewed
See detailBarley (Hordeum distichon L.) roots produce volatile aldehydes via the lipoxygenase/hydroperoxide lyase pathway with a strong age-dependent pattern
Delory, Benjamin ULg; Delaplace, Pierre ULg; du Jardin, Patrick ULg et al

Conference (2014, August 13)

In chemical ecology, the roles played by root-emitted volatile organic compounds (VOCs) in biotic interactions and the quantitative analysis of such chemicals in root tissues remain poorly documented. In ... [more ▼]

In chemical ecology, the roles played by root-emitted volatile organic compounds (VOCs) in biotic interactions and the quantitative analysis of such chemicals in root tissues remain poorly documented. In this context, this study aims at using a fully automated gas chromatography – mass spectrometry methodology allowing both identification and accurate quantification of VOCs produced by roots of a monocotyledonous plant species at five selected developmental stages from germination to the end of tillering. Results show that barley roots mainly produce four volatile aldehydes, namely hexanal, (E)-hex-2-enal, (E)-non-2-enal and (E,Z)-nona-2,6-dienal. These molecules are well-known linoleic and linolenic acid derivatives produced via the lipoxygenase/hydroperoxide lyase pathway of higher plants. Our findings contrast with analyses documented on aboveground barley tissues that mainly emit C6 aldehydes, alcohols and their corresponding esters. Multivariate statistical analyses performed on individual VOC concentrations indicate quantitative changes in the volatile profile produced by barley roots according to plant age. Barley roots produced higher total and individual VOC concentrations when young seminal roots emerged from the coleorhizae compared to older phenological stages. Moreover, results also show that the C6/C9 volatile aldehyde ratio was the lowest at the end of tillering while the maximum mean value of this ratio was reached in seven day-old barley roots. [less ▲]

Detailed reference viewed: 14 (2 ULg)
Peer Reviewed
See detailAllo- and autoinhibition in barley and great brome: a laboratory study
Bouhaouel, Imen ULg; Gfeller, Aurélie; Fauconnier, Marie-Laure ULg et al

Conference (2014, February 08)

Detailed reference viewed: 31 (12 ULg)
Full Text
See detailImpact of abiotic stresses on volatile organic compound production of field crops and grasslands
Digrado, Anthony ULg; Mozaffar, Ahsan ULg; Bachy, Aurélie ULg et al

Poster (2014, February 07)

Abiotic and biotic stresses are known to alter biogenic volatile organic compound (BVOC) emission from plants. With the climate and global change, BVOC emissions are likely to increase. This increase on ... [more ▼]

Abiotic and biotic stresses are known to alter biogenic volatile organic compound (BVOC) emission from plants. With the climate and global change, BVOC emissions are likely to increase. This increase on BVOC emissions could be driven by many environmental parameters like temperature, ozone and light availability for photosynthesis although it is still difficult to predict the impact of some environmental parameters, environmental controls on BVOC emission being species and BVOC-dependent. These BVOC are involved in a wide range of interactions of plants with their environment and these interactions could be affected by the global change. Moreover, BVOC also play a key role in the atmospheric chemistry and may contribute to ozone formation and an increase in methane lifetime, strengthening the global change. Yet, due to technical limitation, there are few studies examining the impact of multiple co-occurring stresses on BVOC emission at the ecosystem level although stress combination is probably more ecologically realistic in field. In the CROSTVOC (for CROp STress VOC) project, the impact of abiotic stresses (e.g. heat, drought, ozone and grazing) on BVOC emission will be investigated for field crops (maize and wheat) and grassland both at the ecosystem and plant scale. [less ▲]

Detailed reference viewed: 33 (7 ULg)
See detailRhizobacterial volatile organic compounds implication in Brachypodium distachyon response to phosphorus deficiency
Baudson, Caroline ULg; Saunier de Cazenave-Mendaluk, Magdalena ULg; du Jardin, Patrick ULg et al

Poster (2014, February 07)

In agriculture, phosphorus (P) is considered as the second most growth-limiting macronutrient after nitrogen. However, P fertilizers are produced from non-renewable resources. In this context, sustainable ... [more ▼]

In agriculture, phosphorus (P) is considered as the second most growth-limiting macronutrient after nitrogen. However, P fertilizers are produced from non-renewable resources. In this context, sustainable production strategies have to be developed to enhance P use efficiency of crops, e.g. based on naturally occurring biotic interactions that limit the negative impacts of P deficiency in soils. Plant growth-promoting rhizobacteria (PGPR) have already revealed their ability to promote plant growth and tolerance to abiotic stresses through many mechanisms. Among them, the bacterial volatile organic compounds-mediated communication between plants and PGPR is still poorly documented. Our research project aims at studying the capacity of a model cereal plant (Brachypodium distachyon (L.) Beauv. Bd21) to face P deficiency in interaction with PGPR. The prerequisite of this project consists in characterizing Bd21 response to P deficiency by measuring plant biomass production and allocation, root system architecture, total phosphorus content, root-secreted and intracellular acid phosphatase activity under various P concentrations. Those results will allow us to define P-limiting conditions, in order to assess PGPR volatiles influence on plant response to P deficiency. This approach will use an ex-vitro co-cultivation system allowing volatiles-mediated interaction and should help us to unravel the ability of rhizobacterial volatiles to enhance plant tolerance to P deficiency. [less ▲]

Detailed reference viewed: 40 (5 ULg)
Full Text
Peer Reviewed
See detailQuantitative gas chromatography - mass spectrometry profiling of volatile organic compounds produced by barley (Hordeum distichon L.) roots according to plant age
Delory, Benjamin ULg; Delaplace, Pierre ULg; du Jardin, Patrick ULg et al

Poster (2014, February 07)

In chemical ecology, the roles played by root-emitted volatile organic compounds (VOCs) in biotic interactions and the quantitative analysis of such chemicals in root tissues remain poorly documented. In ... [more ▼]

In chemical ecology, the roles played by root-emitted volatile organic compounds (VOCs) in biotic interactions and the quantitative analysis of such chemicals in root tissues remain poorly documented. In this context, this study aims at developing a fully automated analytical methodology allowing both identification and accurate quantification of VOCs produced by roots of a monocotyledon plant species. Briefly, VOC emitted by crushed barley roots are successively trapped by dynamic headspace sampling on Tenax TA adsorbents, thermally desorbed and cryofocused, separated by gas chromatography (GC) and finally analysed by mass spectrometry (MS) in both SCAN and selected ion monitoring modes. Results show that barley roots mainly produce four volatile aldehydes, namely hexanal, (E)-hex-2-enal, (E)-non-2-enal and (E,Z)-nona-2,6-dienal. These molecules are well-known linoleic (C18:2) and linolenic (C18:3) acid derivatives produced via the lipoxygenase and the hydroperoxide lyase pathways of higher plants. Our findings contrast with analyses documented on aboveground barley tissues that mainly emit C6 aldehydes, alcohols and their derivative esters. Moreover, preliminary results indicate quantitative changes in the volatile profile contained in barley roots according to plant age. Multivariate statistical analyses are currently underway to quantitatively assess these changes using plants at five selected developmental stages ranging from germination to the end of tillering. [less ▲]

Detailed reference viewed: 42 (9 ULg)
Full Text
Peer Reviewed
See detailarchiDART: a R package allowing root system architecture analysis using Data Analysis of Root Tracings (DART) output files
Delory, Benjamin ULg; Baudson, Caroline ULg; Brostaux, Yves ULg et al

Poster (2014, February 07)

In 2010, Le Bot et al presented a free and open-access software (Data Analysis of Root Tracings - DART) allowing the analysis of complex root system architectures from captured images, particularly across ... [more ▼]

In 2010, Le Bot et al presented a free and open-access software (Data Analysis of Root Tracings - DART) allowing the analysis of complex root system architectures from captured images, particularly across time series. Using this software, a user has to manually identify roots as a set of links. After vectorization of a root system, three final data sets (RAC, TPS and LIE) can be exported as table files containing several attributes for (a) each individual root (e.g. root length), (b) each observation day or (c) each point used to construct the vectorized root system respectively. These data sets can finally be used either to calculate derived root system architecture (RSA) parameters or to draw the root system architecture at selected observation dates. However when an experiment involves the analysis and comparison of many root systems, the calculation of RSA parameters for each data set and the drawing of the corresponding vectorized root systems become time-consuming. In this context, we developed a R package, called archiDART, allowing both the automatic calculation of common root architecture parameters and the X-Y plotting of vectorized root systems for selected observation dates. [less ▲]

Detailed reference viewed: 33 (12 ULg)
Full Text
Peer Reviewed
See detailAllelopathic potential of sunflower against the great brome
Bouhaouel, Imen ULg; Gfeller, Aurélie; Fauconnier, Marie-Laure ULg et al

Poster (2014, February 06)

Control methods commonly used to suppress the great brome (Bromus diandrus Roth., syn. Bromus rigidus Roth. subsp. gussonii Parl.) in Tunisian cereal crop are essentially chemical, raising both efficacy ... [more ▼]

Control methods commonly used to suppress the great brome (Bromus diandrus Roth., syn. Bromus rigidus Roth. subsp. gussonii Parl.) in Tunisian cereal crop are essentially chemical, raising both efficacy and safety issues. The introduction of allelopathic species into the crop rotation or utilizing allelopathic plants as living/green mulches has been suggested as a cost-effective way to reduce the weed presence. Among these species, the sunflower (Helianthus annuus L.) has shown an allelopathic potential against some troublesome weed species. In this study, we analyzed the biological activities of water extract of different tissues (root, shoot, leaf and flower) of sunflower on the seedling establishment of the great brome. In a second experiment, the allelopathic influence of sunflower residues (leaf or flower) against this weed was also studied under glasshouse conditions at more advanced stages of growth using different concentrations (0, 6, 12 and 18g tissue dry weight / kg of soil). The first experiment showed an effect depending on the parts of the sunflower. Indeed, the roots seem to be the less allelopathic part (22% of root inhibition growth) as compared to the leaves and flowers (82% and 100%, respectively). This potential seems to simultaneously affect the radicle and the coleoptile growth of the great brome. In the second experiment, weed growth was inhibited in a dose-dependent manner, using increasing amounts of sunflower residues. The allelopathic potential of the leaves or flowers reduced both the root or shoot length and biomass accumulation of the weed. These results suggest that the sunflower can be a good previous crop for cereal cultivation by controlling the presence of some weeds, including the great brome. In this perspective, the inhibitory effects of sunflower residues on cultivated cereals in the field need to be assessed. [less ▲]

Detailed reference viewed: 30 (1 ULg)
Full Text
See detailA Legal Framework for Plant Biostimulants and Agronomic Fertiliser Additives in the EU - Report to the European Commission, DG Enterprise & Industry
Traon, Daniel; Amat, Laurence; Zotz, Ferdinand et al

Report (2014)

Detailed reference viewed: 20 (4 ULg)
Full Text
Peer Reviewed
See detailMorpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat.
Delporte, Fabienne; Pretova, Anna; du Jardin, Patrick ULg et al

in Protoplasma (2014)

Cellular totipotency is one of the basic principles of plant biotechnology. Currently, the success of the procedure used to produce transgenic plants is directly proportional to the successful insertion ... [more ▼]

Cellular totipotency is one of the basic principles of plant biotechnology. Currently, the success of the procedure used to produce transgenic plants is directly proportional to the successful insertion of foreign DNA into the genome of suitable target tissue/cells that are able to regenerate plants. The mature embryo (ME) is increasingly recognized as a valuable explant for developing regenerable cell lines in wheat biotechnology. We have previously developed a regeneration procedure based on fragmented ME in vitro culture. Before we can use this regeneration system as a model for molecular studies of the morphogenic pathway induced in vitro and investigate the functional links between regenerative capacity and transformation receptiveness, some questions need to be answered. Plant regeneration from cultured tissues is genetically controlled. Factors such as age/degree of differentiation and physiological conditions affect the response of explants to culture conditions. Plant regeneration in culture can be achieved through embryogenesis or organogenesis. In this paper, the suitability of ME tissues for tissue culture and the chronological series of morphological data observed at the macroscopic level are documented. Genetic variability at each step of the regeneration process was evaluated through a varietal comparison of several elite wheat cultivars. A detailed histological analysis of the chronological sequence of morphological events during ontogeny was conducted. Compared with cultures of immature zygotic embryos, we found that the embryogenic pathway occurs slightly earlier and is of a different origin in our model. Cytological, physiological, and some biochemical aspects of somatic embryo formation in wheat ME culture are discussed. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailEFSA's scientific activities and achievements on the risk assessment of genetically modified organisms (GMOs) during its first decade of existence: looking back and ahead.
Devos, Yann; Aguilera, Jaime; Diveki, Zoltan et al

in Transgenic research (2014), 23(1), 1-25

Genetically modified organisms (GMOs) and derived food and feed products are subject to a risk analysis and regulatory approval before they can enter the market in the European Union (EU). In this risk ... [more ▼]

Genetically modified organisms (GMOs) and derived food and feed products are subject to a risk analysis and regulatory approval before they can enter the market in the European Union (EU). In this risk analysis process, the role of the European Food Safety Authority (EFSA), which was created in 2002 in response to multiple food crises, is to independently assess and provide scientific advice to risk managers on any possible risks that the use of GMOs may pose to human and animal health and the environment. EFSA's scientific advice is elaborated by its GMO Panel with the scientific support of several working groups and EFSA's GMO Unit. This review presents EFSA's scientific activities and highlights its achievements on the risk assessment of GMOs for the first 10 years of its existence. Since 2002, EFSA has issued 69 scientific opinions on genetically modified (GM) plant market registration applications, of which 62 for import and processing for food and feed uses, six for cultivation and one for the use of pollen (as or in food), and 19 scientific opinions on applications for marketing products made with GM microorganisms. Several guidelines for the risk assessment of GM plants, GM microorganisms and GM animals, as well as on specific issues such as post-market environmental monitoring (PMEM) were elaborated. EFSA also provided scientific advice upon request of the European Commission on safeguard clause and emergency measures invoked by EU Member States, annual PMEM reports, the potential risks of new biotechnology-based plant breeding techniques, evaluations of previously assessed GMOs in the light of new scientific publications, and the use of antibiotic resistance marker genes in GM plants. Future challenges relevant to the risk assessment of GMOs are discussed. EFSA's risk assessments of GMO applications ensure that data are analysed and presented in a way that facilitates scientifically sound decisions that protect human and animal health and the environment. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailReprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato
Mariutto, Martin; Fauconnier, Marie-Laure ULg; Ongena, Marc ULg et al

in Plant Molecular Biology (2013), 84(4-5), 455-476

The rhizobacterium Pseudomonas putida BTP1 stimulates induced systemic resistance (ISR) in tomato. A previous work showed that the resistance is associated in leaves with the induction of the first enzyme ... [more ▼]

The rhizobacterium Pseudomonas putida BTP1 stimulates induced systemic resistance (ISR) in tomato. A previous work showed that the resistance is associated in leaves with the induction of the first enzyme of the oxylipin pathway, the lipoxygenase (LOX), leading to a faster accumulation of its product, the free 13-hydroperoxy octadecatrienoic acid (13-HPOT), 2 days after Botrytis cinerea inoculation. In the present study, we further investigated the stimulation of the oxylipin pathway: metabolites and enzymes of the pathway were analyzed to understand the fate of the 13-HPOT in ISR. Actually the stimulation began upstream the LOX: free linolenic acid accumulated faster in P. putida BTP1-treated plants than in control. Downstream, the LOX products 13-fatty acid hydroperoxides esterified to galactolipids and phospholipids were more abundant in bacterized plants than in control before infection. These metabolites could constitute a pool that will be used after pathogen attack to produce free fungitoxic metabolites through the action of phospholipase A2, which is enhanced in bacterized plants upon infection. Enzymatic branches which can use as substrate the fatty acid hydroperoxides were differentially regulated in bacterized plants in comparison to control plants, so as to lead to the accumulation of the most fungitoxic compounds against B. cinerea. Our study, which is the first to demonstrate the accumulation of an esterified defense metabolite during rhizobacteria-mediated induced systemic resistance, showed that the oxylipin pathway is differentially regulated. It suggests that this allows the plant to prepare to a future infection, and to respond faster and in a more effective way to B. cinerea invasion. [less ▲]

Detailed reference viewed: 35 (18 ULg)