References of "Driever, Wolfgang"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAutomated Processing of Zebrafish Imaging Data: A Survey
Mikut, Ralf; Dickmeis, Thomas; Driever, Wolfgang et al

in Zebrafish (2013), 10(3), 401-421

Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of ... [more ▼]

Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. [less ▲]

Detailed reference viewed: 56 (9 ULg)
Full Text
Peer Reviewed
See detailFast Homozygosity Mapping and Identification of a Zebrafish ENU-Induced Mutation by Whole-Genome Sequencing.
Voz, Marianne ULg; Coppieters, Wouter ULg; Manfroid, Isabelle ULg et al

in PLoS ONE (2012), 7(4), 34671

Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and ... [more ▼]

Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and involves time-consuming genetic mapping. Here, we show that high-throughput sequencing of the whole zebrafish genome can directly locate the interval carrying the causative mutation and at the same time pinpoint the molecular lesion. The feasibility of this approach was validated by sequencing the m1045 mutant line that displays a severe hypoplasia of the exocrine pancreas. We generated 13 Gb of sequence, equivalent to an eightfold genomic coverage, from a pool of 50 mutant embryos obtained from a map-cross between the AB mutant carrier and the WIK polymorphic strain. The chromosomal region carrying the causal mutation was localized based on its unique property to display high levels of homozygosity among sequence reads as it derives exclusively from the initial AB mutated allele. We developed an algorithm identifying such a region by calculating a homozygosity score along all chromosomes. This highlighted an 8-Mb window on chromosome 5 with a score close to 1 in the m1045 mutants. The sequence analysis of all genes within this interval revealed a nonsense mutation in the snapc4 gene. Knockdown experiments confirmed the assertion that snapc4 is the gene whose mutation leads to exocrine pancreas hypoplasia. In conclusion, this study constitutes a proof-of-concept that whole-genome sequencing is a fast and effective alternative to the classical positional cloning strategies in zebrafish. [less ▲]

Detailed reference viewed: 22 (7 ULg)
Full Text
Peer Reviewed
See detailCloning and expression of the TALE superclass homeobox Meis2 gene during zebrafish embryonic development
Biemar, Frédéric; Devos, Nathalie; Martial, Joseph ULg et al

in Mechanisms of Development (2001), 109(2), 427-431

Meis and Prep/Pknox (MEINOX family) proteins, together with Pbx (PBC family) proteins, belong to the TALE superfamily characterized by an atypical homeodomain containing three additional amino acids ... [more ▼]

Meis and Prep/Pknox (MEINOX family) proteins, together with Pbx (PBC family) proteins, belong to the TALE superfamily characterized by an atypical homeodomain containing three additional amino acids between helix 1 and helix 2. Members of the MEINOX and PBC families have been isolated in Caenorhabditis elegans, Drosophila, Xenopus, chick, mouse and human. and play crucial roles in many aspects of embryogenesis. Here, we report the isolation of meis2 in zebrafish. Expression of meis2 is first detected at the beginning of gastrulation. Later during embryogenesis. meis2 transcripts are found in distinct domains of the central nervous system with the strongest expression in the hindbrain, Expression was also detected in the isthmus. along the spinal cord and in the lateral mesoderm, As development proceeds, meis2 is also expressed in the developing retina, pharyngeal arches, and in the vicinity of the gut tube. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 25 (3 ULg)