References of "Dintrans, B"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEstimating the p-mode frequencies of the solar twin 18 Scorpii
Bazot, M.; Campante, T.L.; Chaplin, W.J. et al

in Astronomy and Astrophysics (2012), 544

Solar twins have been a focus of attention for more than a decade, because their structure is extremely close to that of the Sun. Today, thanks to high-precision spectrometers, it is possible to use ... [more ▼]

Solar twins have been a focus of attention for more than a decade, because their structure is extremely close to that of the Sun. Today, thanks to high-precision spectrometers, it is possible to use asteroseismology to probe their interiors. Our goal is to use time series obtained from the HARPS spectrometer to extract the oscillation frequencies of 18 Sco, the brightest solar twin. We used the tools of spectral analysis to estimate these quantities. We estimate 52 frequencies using an MCMC algorithm. After examination of their probability densities and comparison with results from direct MAP optimization, we obtain a minimal set of 21 reliable modes. The identification of each pulsation mode is straightforwardly accomplished by comparing to the well-established solar pulsation modes. We also derived some basic seismic indicators using these values. These results offer a good basis to start a detailed seismic analysis of 18 Sco using stellar models. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailLong-term magnetic field monitoring of the Sun-like star \xi Bootis A
Morgenthaler, A.; Petit, P.; Saar, S. et al

in Astronomy and Astrophysics (2012), 540

Aims: We aim to investigate the long-term temporal evolution of the magnetic field of the solar-type star ξ Bootis A, both from direct magnetic field measurements and from the simultaneous estimate of ... [more ▼]

Aims: We aim to investigate the long-term temporal evolution of the magnetic field of the solar-type star ξ Bootis A, both from direct magnetic field measurements and from the simultaneous estimate of indirect activity indicators. Methods: We obtained seven epochs of high-resolution, circularly-polarized spectra from the NARVAL spectropolarimeter between 2007 and 2011, for a total of 76 spectra. Using approximately 6100 photospheric spectral lines covering the visible domain, we employed a cross-correlation procedure to compute a mean polarized line profile from each spectrum. The large-scale photospheric magnetic field of the star was then modelled by means of Zeeman-Doppler Imaging, allowing us to follow the year-to-year evolution of the reconstructed magnetic topology. Simultaneously, we monitored the width of several magnetically sensitive spectral lines, the radial velocity, the line asymmetry of intensity line profiles, and the chromospheric emission in the cores of the Ca II H and Hα lines. Results: During the highest observed activity states, in 2007 and 2011, the large-scale field of ξ Bootis A is almost completely axisymmetric and is dominated by its toroidal component. The toroidal component persists with a constant polarity, containing a significant fraction of the magnetic energy of the large-scale surface field through all observing epochs. The magnetic topologies reconstructed for these activity maxima are very similar, suggesting a form of short cyclicity in the large-scale field distribution. The mean unsigned large-scale magnetic flux derived from the magnetic maps varies by a factor of about 2 between the lowest and highest observed magnetic states. The chromospheric flux is less affected and varies by a factor of 1.2. Correlated temporal evolution, due to both rotational modulation and seasonal variability, is observed between the Ca II emission, the Hα emission and the width of magnetically sensitive lines. The rotational dependence of polarimetric magnetic measurements displays a weak correlation with other activity proxies, presumably due to the different spatial scales and centre-to-limb darkening associated with polarimetric signatures, as compared to non-polarized activity indicators. Better agreement is observed on the longer term. When measurable, the differential rotation reveals a strong latitudinal shear in excess of 0.2 rad d-1. [less ▲]

Detailed reference viewed: 16 (0 ULg)
Full Text
Peer Reviewed
See detailThe radius and mass of the close solar twin 18 Scorpii derived from asteroseismology and interferometry
Bazot, Michaël; Ireland, M. J.; Huber, D. et al

in Astronomy and Astrophysics (2011), 526

The growing interest in solar twins is motivated by the possibility of comparing them directly to the Sun. To carry on this kind of analysis, we need to know their physical characteristics with precision ... [more ▼]

The growing interest in solar twins is motivated by the possibility of comparing them directly to the Sun. To carry on this kind of analysis, we need to know their physical characteristics with precision. Our first objective is to use asteroseismology and interferometry on the brightest of them: 18 Sco. We observed the star during 12 nights with HARPS for seismology and used the PAVO beam-combiner at CHARA for interferometry. An average large frequency separation 134.4 ± 0.3 μHz and angular and linear radiuses of 0.6759 ± 0.0062 mas and 1.010 ± 0.009 Rsun were estimated. We used these values to derive the mass of the star, 1.02 ± 0.03 Msun. [less ▲]

Detailed reference viewed: 19 (4 ULg)
Full Text
Peer Reviewed
See detailLong-term magnetic field monitoring of the sun-like star ξ Bootis A
Morgenthaler, A.; Petit, P.; Aurière, M. et al

in Boissier, S.; Heydari-Malayeri, M.; Samadi, R. (Eds.) et al SF2A-2010: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (2010, December 01)

Phase-resolved observations of the solar-type star ξ Bootis A were obtained using the Narval spectropolarimeter at Telescope Bernard Lyot (Pic du Midi, France) during years 2007, 2008, 2009 and 2010. The ... [more ▼]

Phase-resolved observations of the solar-type star ξ Bootis A were obtained using the Narval spectropolarimeter at Telescope Bernard Lyot (Pic du Midi, France) during years 2007, 2008, 2009 and 2010. The data sets enable us to study both the rotational and the long-term evolution of various activity tracers. Here, we focus on the large-scale photospheric magnetic field (reconstructed by Zeeman-Doppler Imaging), the Zeeman broadening of the FeI 846.84 nm magnetic line, and the chromospheric CaII H and Hα emission. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailThe rapid rotation and complex magnetic field geometry of Vega
Petit, Pascal; Lignières, F.; Wade, G. A. et al

in Astronomy and Astrophysics (2010), 523

Context. The recent discovery of a weak surface magnetic field on the normal intermediate-mass star Vega raises the question of the origin of this magnetism in a class of stars that was not previously ... [more ▼]

Context. The recent discovery of a weak surface magnetic field on the normal intermediate-mass star Vega raises the question of the origin of this magnetism in a class of stars that was not previously known to host detectable magnetic fields. <br />Aims: We aim to confirm the field detection reported by Lignières et al. (2009, A&A, 500, L41) and provide additional observational constraints about the field characteristics, by modelling the large-scale magnetic geometry of the star and by investigating a possible seasonal variability of the reconstructed field topology. <br />Methods: We analyse a total of 799 high-resolution circularly-polarized spectra collected with the NARVAL and ESPaDOnS spectropolarimeters during 2008 and 2009. Using about 1100 spectral lines, we employ a cross-correlation procedure to compute, from each spectrum, a mean polarized line profile with a signal-to-noise ratio of about 20 000. The technique of Zeeman-Doppler Imaging is then used to determine the rotation period of the star and reconstruct the large-scale magnetic geometry of Vega at two different epochs. <br />Results: We confirm the detection of circularly polarized signatures in the mean line profiles. The signal shows up in four independent data sets acquired with both NARVAL and ESPaDOnS. The amplitude of the polarized signatures is larger when spectral lines of higher magnetic sensitivity are selected for the analysis, as expected for a signal of magnetic origin. The short-term evolution of polarized signatures is consistent with a rotational period of 0.732 ± 0.008 d. The reconstruction of the magnetic topology unveils a magnetic region of radial field orientation, closely concentrated around the rotation pole. This polar feature is accompanied by a small number of magnetic patches at lower latitudes. No significant variability in the field structure is observed over a time span of one year. <br />Conclusions: The repeated observational evidence that Vega possesses a weak photospheric magnetic field strongly suggests that a previously unknown type of magnetic stars exists in the intermediate-mass domain. Vega may well be the first confirmed member of a much larger, as yet unexplored, class of weakly-magnetic stars now investigatable with the current generation of stellar spectropolarimeters. [less ▲]

Detailed reference viewed: 54 (30 ULg)
Full Text
Peer Reviewed
See detailExploring the magnetic topologies of cool stars
Morin, J.; Donati, J *-F; Petit, P. et al

in IAU Symposium Proceedings (2010, September 01)

Magnetic fields of cool stars can be directly investigated through the study of the Zeeman effect on photospheric spectral lines using several approaches. With spectroscopic measurement in unpolarised ... [more ▼]

Magnetic fields of cool stars can be directly investigated through the study of the Zeeman effect on photospheric spectral lines using several approaches. With spectroscopic measurement in unpolarised light, the total magnetic flux averaged over the stellar disc can be derived but very little information on the field geometry is available. Spectropolarimetry provides a complementary information on the large-scale component of the magnetic topology. With Zeeman-Doppler Imaging (ZDI), this information can be retrieved to produce a map of the vector magnetic field at the surface of the star, and in particular to assess the relative importance of the poloidal and toroidal components as well as the degree of axisymmetry of the field distribution. The development of high-performance spectropolarimeters associated with multi-lines techniques and ZDI allows us to explore magnetic topologies throughout the Hertzsprung-Russel diagram, on stars spanning a wide range of mass, age and rotation period. These observations bring novel constraints on magnetic field generation by dynamo effect in cool stars. In particular, the study of solar twins brings new insight on the impact of rotation on the solar dynamo, whereas the detection of strong and stable dipolar magnetic fields on fully convective stars questions the precise role of the tachocline in this process. [less ▲]

Detailed reference viewed: 14 (0 ULg)