References of "Detrembleur, Christophe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCobalt-mediated radical polymerization of vinyl acetate and acrylonitrile in supercritical carbon dioxide
Kermagoret; Chau, Ngoc Do Quyen; Grignard, Bruno ULg et al

in Macromolecular Rapid Communications (in press)

Cobalt-mediated radical polymerization (CMRP) of vinyl acetate (VAc) is successfully achieved in supercritical carbon dioxide (scCO 2 ). CMRP of VAc is conducted using an alkyl-cobalt(III) adduct that is ... [more ▼]

Cobalt-mediated radical polymerization (CMRP) of vinyl acetate (VAc) is successfully achieved in supercritical carbon dioxide (scCO 2 ). CMRP of VAc is conducted using an alkyl-cobalt(III) adduct that is soluble in scCO2 . Kinetics studies coupled to visual observations of the polymerization medium highlight that the melt viscosity and PVAc molar mass ( Mn ) are key parameters that affect the CMRP in scCO2. It is noticed that CMRP is controlled for M n up to 10 000 g mol−1 , but loss of control is progressively observed for higher molar masses when PVAc precipitates in the polymerization medium. Low molar mass PVAc macroinitiator, prepared by CMRP in scCO2 , is then successfully used to initiate the acrylonitrile polymerization. PVAc-b-PAN block copolymer is collected as a free flowing powder at the end of the process although the dispersity of the copolymer increases with the reaction time. Although optimization is required to decrease the dispersity of the polymer formed, this CMRP process opens new perspectives for macromolecular engineering in scCO2 without the utilization of fluorinated comonomers or organic solvents. [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailCO2-blown microcellular non-isocyanate polyurethane (NIPU) foams: from bio- and CO2-sourced monomers to potentially thermal insulating materials
Grignard, Bruno ULg; Thomassin, Jean-Michel ULg; Gennen, Sandro ULg et al

in Green Chemistry (in press)

Bio- and CO2-sourced non-isocyanate polyurethane (NIPU) microcellular foams were prepared using supercritical carbon dioxide (scCO2) foaming technology. These low-density foams offer low thermal ... [more ▼]

Bio- and CO2-sourced non-isocyanate polyurethane (NIPU) microcellular foams were prepared using supercritical carbon dioxide (scCO2) foaming technology. These low-density foams offer low thermal conductivity and have an impressive potential for use in insulating materials. They constitute attractive alternatives to conventional polyurethane foams. We investigated CO2’s ability to synthesize the cyclic carbonates that are used in the preparation of NIPU by melt step-growth polymerization with a bio-sourced amino-telechelic oligoamide and for NIPU foaming. Our study shows that CO2 is not only sequestered in the material for long-term application, but is also valorized as a blowing agent in the production of NIPU foams. Such foams will contribute to energy conservation and savings by reducing CO2 emissions. [less ▲]

Detailed reference viewed: 45 (8 ULg)
Full Text
Peer Reviewed
See detailProcessing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb
Bollen, Pierre; Quievy, Nicolas; Detrembleur, Christophe ULg et al

in Materials & Design (2016), 89

A multifunctional hybrid material class in the form of a sandwich panel has been developed towards the com- bined optimization of mechanical and electromagnetic absorption performance. The faces of the ... [more ▼]

A multifunctional hybrid material class in the form of a sandwich panel has been developed towards the com- bined optimization of mechanical and electromagnetic absorption performance. The faces of the panel are made of glass fibre reinforced epoxy composites and the core is made of carbon nanotube reinforced polymer foam filling a metallic honeycomb. The different processing strategies and options tested to fabricate the core material are described aswell as the associated scientific and technological issues. The most efficient processing route is by foaming the nanocomposite with a chemical foaming agent directly inside the honeycomb. This route offers a good surface finish and the operation can be achieved in one step. But, in order to produce large panels with a semi-continuous process, thermo-mechanical insertion of the foamed nanocomposite with supercritical CO2 can be more suitable. The characterization of the electromagnetic absorption of the panels produced by dif- ferent routes shows that the performance is not much sensitive to processing defects making possible upscaling to mass production. [less ▲]

Detailed reference viewed: 33 (3 ULg)
See detailNovel organocobalt based on acetylacetonate ligands for the precision synthesis of telechelic polymers
Demarteau, Jérémy ULg; Cordella, Daniela ULg; Kermagoret, Anthony et al

Conference (2015, December 17)

Organocobalt(III) with acetylacetonate ligands is the most representative example of R-Co bearing a weak C-Co bond that can release alkyl radicals under mild experimental conditions without requiring a ... [more ▼]

Organocobalt(III) with acetylacetonate ligands is the most representative example of R-Co bearing a weak C-Co bond that can release alkyl radicals under mild experimental conditions without requiring a photoactivation. The unique isolated specimen is a short oligo(vinyl acetate) end-capped by Co(acac)2. The high lability of the C-Co bond of this R-Co combined to the unique capacity of Co(acac)2 to reversibly trap alkyl radicals make this organocobalt unique for the precision synthesis of unprecedented polymers by the so-called Cobalt-Mediated Radical Polymerization (CMRP) technique. The growth of unstabilized and highly reactive growing radicals formed by the addition of R· to unconjugated olefins (vinyl esters, vinyl amides, vinyl imidazolium, vinyl chloride, ethylene) is controlled by the reversible formation of a weak C-Co bond at the polymer chain end. The lack of alternatives to this R-Co, especially to the structure of the alkyl group, has placed limitations on further innovation in (macro)molecular design. Other functional variants that would enable attractive chain-end derivatizations are unfortunately not available. In this communication, we will address this important challenge by describing an innovative synthetic route towards the preparation of a new functional R-Co(acac)2 that are characterized by a weak C-Co bond. We will report the conditions required for initiating and controlling the radical polymerization of various monomers from these R-Co. We will also demonstrate their utility for the production of novel telechelic polymers under mild experimental conditions, syntheses that can be carried out in water. [less ▲]

Detailed reference viewed: 16 (3 ULg)
Full Text
Peer Reviewed
See detailExperimental and computational micro–mechanical investigations of compressive properties of polypropylene/multi–walled carbon nanotubes nanocomposite foams
Wan, Fangyi; Tran, Minh Phuong; Leblanc, Christophe ULg et al

in Mechanics of Materials (2015), 91(Part 1), 95-118

The compressive behavior of nanocomposite foams is studied by both experimental and computational micro-mechanics approaches with the aim of providing an efficient computational model for this kind of ... [more ▼]

The compressive behavior of nanocomposite foams is studied by both experimental and computational micro-mechanics approaches with the aim of providing an efficient computational model for this kind of material. The nanocomposites based on polypropylene (PP) and different contents of multi-walled carbon nanotubes (CNTs) are prepared by melt mixing method. The nanocomposite samples are foamed using super-critical carbon dioxide (ScCO2) as blowing agent at different soaking temperatures. The influence of this foaming parameter on the morphological characteristics of the foam micro-structure is discussed. Differential Scanning Calorimetry (DSC) measurements are used to quantify the crystallinity degree of both nanocomposites and foams showing that the crystallinity degree is reduced after the foaming process. This modification leads to mechanical properties of the foam cell walls that are different from the raw nanocomposite PP/CNTs material. Three--point bending tests are performed on the latter to measure the flexural modulus in terms of the crystallinity degree. Uniaxial compression tests are then performed on the foamed samples under quasi-static conditions in order to extract the macro-scale compressive response. Next, a two-level multi-scale approach is developed to model the behavior of the foamed nanocomposite material. On the one hand, the micro-mechanical properties of nanocomposite PP/CNTs cell walls are evaluated from a theoretical homogenization model accounting for the micro-structure of the semi-crystalline PP, for the degree of crystallinity, and for the CNT volume fraction. The applicability of this theoretical model is demonstrated via the comparison with experimental data from the described experimental measurements and from literature. On the other hand, the macroscopic behavior of the foamed material is evaluated using a computational micro-mechanics model using tetrakaidecahedron unit cells and periodic boundary conditions to estimate the homogenized properties. The unit cell is combined with several geometrical imperfections in order to capture the elastic collapse of the foamed material. The numerical results are compared to the experimental measurements and it is shown that the proposed unit cell computational micro-mechanics model can be used to estimate the homogenized behavior, including the linear and plateau regimes, of nanocomposite foams. [less ▲]

Detailed reference viewed: 127 (51 ULg)
See detailPolymer chemistry for theragnostics
Liu, Ji; Detrembleur, Christophe ULg; Duguet, Etienne et al

Conference (2015, November)

Stimuli-responsive nano-materials have been playing increasingly important roles in the biomedical field due to their ability to adapt their physico-chemical properties in response to external stimuli ... [more ▼]

Stimuli-responsive nano-materials have been playing increasingly important roles in the biomedical field due to their ability to adapt their physico-chemical properties in response to external stimuli, such as temperature, pH, ionic strength, magnetic field, etc. Nanohybrids combining inorganic particles and stimuli-responsive polymers are particularly well-suited to develop advanced drug nanocarriers for targeted delivery and concomitant diagnostics. Based on the recent developments in controlled radical polymerization, especially cobalt-mediated radical polymerization, various hybrid nanostructures have been synthesized and tested as drug delivery systems able to trigger the drug release in response to dedicated environment conditions or external stimuli. Studies on cytotoxicity, cellular uptake and in vitro triggered release with cell culture will also highlight the potential of these new materials. [less ▲]

Detailed reference viewed: 42 (5 ULg)
See detailNew synthetic possibilities offered by organometallic-mediated radical polymerization
Debuigne, Antoine ULg; Demarteau, Jérémy ULg; Kermagoret, Anthony et al

Scientific conference (2015, October 08)

In the last years, considerable efforts have been devoted to the development of methods for controlling the radical polymerization of vinyl monomers and designing a large range of well-defined ... [more ▼]

In the last years, considerable efforts have been devoted to the development of methods for controlling the radical polymerization of vinyl monomers and designing a large range of well-defined macromolecular structures with specific properties. Although significant progress has been made, there is still room for improvements especially for the so-called ‘less activated’ monomers (LAMs) like vinyl esters, N-vinylamides, olefins, etc. This presentation aims to describe the potential of the Organometallic-Mediated Radical Polymerization (OMRP) for controlling the polymerization of these challenging monomers. Basic principles of OMRP will be presented as well as cutting edge developments in this field like the precision design of ethylene-vinyl acetate copolymers (EVAs) or the synthesis of novel alkylcobalt(III) species used as functional OMRP initiator for producing unique well-defined α-functional polymers. [less ▲]

Detailed reference viewed: 22 (6 ULg)
Full Text
Peer Reviewed
See detailHalomethyl-cobalt(bis-acetylacetonate) for the controlled synthesis of functional polymers
Demarteau, Jérémy ULg; Kermagoret, Anthony; German, Ian et al

in Chemical Communications (2015), 51(76), 14334-14337

Novel organocobalt complexes featuring weak C–CoL2 bonds (L = acetylacetonate) are prepared and used as sources of halomethyl radicals. They permit the precision synthesis of a-halide functionalized and ... [more ▼]

Novel organocobalt complexes featuring weak C–CoL2 bonds (L = acetylacetonate) are prepared and used as sources of halomethyl radicals. They permit the precision synthesis of a-halide functionalized and telechelic polymers in organic media or in water. Substitution of halide by azide allows derivatization of polymers using the CuAAC click reaction. [less ▲]

Detailed reference viewed: 43 (20 ULg)
Full Text
See detailBioinspired polymers for the functionalization of stainless steel surfaces by green processes
Detrembleur, Christophe ULg

Scientific conference (2015, September 17)

Detailed reference viewed: 20 (2 ULg)
See detailNew efficient organocatalytic system for solvent-free chemical fixation of CO2 into epoxides
Panchireddy, Satyannarayana ULg; Gennen, Sandro ULg; Alves, Margot ULg et al

Poster (2015, September 11)

Due to concerns about global warming combined with the decrease of fossil resources, the chemical transformation of carbon dioxide (CO2) into added-value products has gained interest in both academic and ... [more ▼]

Due to concerns about global warming combined with the decrease of fossil resources, the chemical transformation of carbon dioxide (CO2) into added-value products has gained interest in both academic and industrial fields. To date, the chemical fixation of CO2 onto epoxides with the formation of cyclic carbonates (CC) is one of the most promising ways to valorise CO2 at an industrial scale. Indeed, CC are useful monomers for polycarbonate synthesis and they can react with primary amines to produce 2-hydroxyethylurethane. This reaction can be extrapolated to the synthesis of non-isocyanate polyurethanes (NIPUs) by a step growth polymerization between bifunctional CC and diamines. [less ▲]

Detailed reference viewed: 67 (3 ULg)
Full Text
See detailCobalt-mediated radical polymerization for the precision design of novel poly(ionic liquid) copolymers in aqueous media
Cordella, Daniela ULg; Kermagoret, Anthony; Debuigne, Antoine ULg et al

Poster (2015, September 11)

Poly(ionic liquid)s (PILs) have emerged as a special class of polyelectrolyte materials, featuring tunable solubility, high ionic conductivity, and a broad range of glass transition temperatures. Due to ... [more ▼]

Poly(ionic liquid)s (PILs) have emerged as a special class of polyelectrolyte materials, featuring tunable solubility, high ionic conductivity, and a broad range of glass transition temperatures. Due to their specific properties emanating from the ionic liquid (IL) units and their intrinsic polymeric nature, PILs find potential applications in various areas, such as analytical chemistry, biotechnology, gas separation, dispersants, solid ionic conductors for energy, catalysis, etc. In recent years, controlled radical polymerization (CRP) techniques have been applied to the synthesis of structurally well-defined PILs, with control attained over molar mass, dispersity, and end-group fidelity. In this poster, we will report on the implementation of cobalt-mediated radical polymerization (CMRP) technique for the precision synthesis of unprecedented PILs (co)polymers. We will discuss how an organocobalt complex can efficiently control the growth of vinyl imidazolium chains and lead to PILs with predicted molar masses and low polydispersities under mild experimental conditions, thus at low temperature and using water as a green polymerization medium. The huge potential of this system will be highlighted by describing the one-pot synthesis of all vinyl imidazolium-based block copolymers in aqueous media. This CMRP is unique for providing well-defined vinyl imidazolium based-copolymers for advanced PILs applications. [less ▲]

Detailed reference viewed: 35 (3 ULg)
See detailNovel organocobalt for the synthesis of functional polymers
Demarteau, Jérémy ULg; Kermagoret, Anthony; Jérôme, Christine ULg et al

Poster (2015, September 11)

Organocobalt(III) with acetylacetonate (acac) ligands is the most representative example of R-Co bearing a labile C-Co bond that can release alkyl radicals under mild experimental conditions without ... [more ▼]

Organocobalt(III) with acetylacetonate (acac) ligands is the most representative example of R-Co bearing a labile C-Co bond that can release alkyl radicals under mild experimental conditions without requiring a photoactivation. The unique isolated R-Co is a short oligo(vinyl acetate) end-capped by Co(acac)2. The high lability of its C-Co bond combined to the unique capacity of Co(acac)2 to reversibly trap alkyl radicals make this R-Co unique for the precision design of unprecedented polymers by Cobalt-Mediated Radical Polymerization (CMRP). The growth of unstabilized and highly reactive growing radicals formed by the addition of R• to unconjugated vinyl monomers (vinyl esters, vinyl amides, vinyl imidazolium, vinyl chloride, etc;) is controlled by the reversible formation of a weak C-Co bond at the polymer chain end. The lack of alternatives to this R-Co, especially to the structure of the alkyl group, has however placed limitations on post-functionalizations of end-chains. Other functional variants that would enable attractive chain-end derivatizations are unfortunately not available. In this poster, we will address this important challenge by describing an innovative synthetic route towards the preparation of new functional R-Co(acac)2 that are sources of halomethyl radicals under mild experimental conditions. The efficiency of these novel organocobalt complexes for the precision synthesis of end-functional and telechelic polymers will be described. Also, the solubility of these complexes in water enables the facile production of end-functionalized water soluble poly(ionic liquid)s. Further derivatizations of the halomethyl group at the chain-end of polymers produced by this system will be demonstrated by click reaction, largely broadening the range of possible functional groups. Finally, besides numerous applications in macromolecular engineering, this unexplored family of R-Co presents a high potential in radical reactions in organic synthesis by the facile production of halomethyl radicals. [less ▲]

Detailed reference viewed: 39 (3 ULg)
Full Text
Peer Reviewed
See detailLow bandgap copolymers based on monofluorinated isoindigo towards efficient polymer solar cells
Tomassetti, Mirco ULg; Ouhib, Farid ULg; Wislez, Arnaud ULg et al

in Polymer Chemistry (2015), 6(33), 6040-6049

To explore the effectiveness of monofluorinated isoindigo as an electron-deficient building block in push–pull conjugated polymers for organic solar cell applications, four low bandgap copolymers are ... [more ▼]

To explore the effectiveness of monofluorinated isoindigo as an electron-deficient building block in push–pull conjugated polymers for organic solar cell applications, four low bandgap copolymers are effectively synthesized and characterized. The effects of fluorine introduction, thiophene spacer length and polymer molar mass on the general electro-optical polymer characteristics, thin film blend micro- structure and electronic performance are investigated. Isoindigo monofluorination effectively improves the power conversion efficiency from 2.8 up to 5.0% upon molar mass optimization, without using any processing additives or post-treatments. [less ▲]

Detailed reference viewed: 19 (3 ULg)
Full Text
Peer Reviewed
See detailOrganocatalytic promoted coupling of carbon dioxide with epoxides: a rational investigation of the cocatalytic activity of various hydrogen bond donors
Alves, Margot ULg; Grignard, Bruno ULg; Gennen, Sandro ULg et al

in Catalysis Science & Technology (2015), 5(9), 4636-4643

A catalytic platform based on an onium salt used in combination with organic cocatalysts of various structures was developed for the efficient CO2/epoxide coupling under mild conditions. Through detailed ... [more ▼]

A catalytic platform based on an onium salt used in combination with organic cocatalysts of various structures was developed for the efficient CO2/epoxide coupling under mild conditions. Through detailed kinetic studies by in-situ FT-IR spectroscopy, a rational investigation of the efficiency of a series of commercially available hydrogen bond donors co-catalysts was realized and the influence of different parameters such as the pressure, the temperature, the catalyst loading, and the nature of the epoxide on the reaction kinetics was evaluated. Fluorinated alcohols were found to be more efficient than other hydrogen bond donor activators proposed previously in the literature under similar conditions. [less ▲]

Detailed reference viewed: 61 (19 ULg)
Full Text
Peer Reviewed
See detailDesign of hybrid nanovehicles for remotely triggered drug release: an overview
Liu, Ji; Detrembleur, Christophe ULg; Mornet, Stéphane et al

in Journal of Materials Chemistry B (2015), 3(30), 6117-6147

n the past few decades, various nanovehicles have been developed as drug delivery systems, in which inorganic and organic components are integrated within a nano-object. Upon the application of remote ... [more ▼]

n the past few decades, various nanovehicles have been developed as drug delivery systems, in which inorganic and organic components are integrated within a nano-object. Upon the application of remote stimuli, e.g. alternating magnetic field, near infrared or ultrasound radiations, the release of guest molecules can be triggered in a quite controlled manner. Herein, we review different hybrid nanostructures which have already been reported for the remotely triggered release, such as those based on (1) host–guest conjugates, (2) core–corona nanoparticles, (3) polymer nanogels, (4) polymer micelles, (5) liposomes, (6) mesoporous silica particles and (7) hollow nanoparticles. Moreover, we also summarize six underlying mechanisms that govern such a kind of remotely triggered release behaviours: (1) enhanced diffusion and/or permeation, (2) thermo- or photo-labile bond cleavage, (3) fusion of phase-changed materials, (4) photo-induced isomerisation, (5) thermo-induced swelling/de-swelling of thermo-responsive polymers, and (6) destruction of the nanostructures. The ways in which different components are incorporated into an integrated hybrid nanostructure and how they contribute to the remotely triggered release behaviours are detailed. [less ▲]

Detailed reference viewed: 49 (2 ULg)
Full Text
Peer Reviewed
See detailAll Poly(ionic liquid)-based block copolymers by sequential controlled radical copolymerization of vinylimidazolium monomers
Cordella, Daniela ULg; Kermagoret, Anthony; Debuigne, Antoine ULg et al

in Macromolecules (2015), 48(15), 5230-5243

The organometallic-mediated radical polymerization (OMRP) of N-vinyl-3-alkylimidazolium-type monomers, featuring the bis(trifluoromethylsulfonyl)imide counteranion (Tf2N–), in the presence of Co(acac)2 as ... [more ▼]

The organometallic-mediated radical polymerization (OMRP) of N-vinyl-3-alkylimidazolium-type monomers, featuring the bis(trifluoromethylsulfonyl)imide counteranion (Tf2N–), in the presence of Co(acac)2 as controlling agent, is reported. Polymerizations of monomers with methyl, ethyl, and butyl substituents are fast, reaching high monomer conversion in ethyl acetate as solvent at 30 °C, and afford structurally well-defined hydrophobic poly(ionic liquid)s (PILs) of N-vinyl type. Block copolymer synthesis is also achieved by sequential OMRP of N-vinyl-3-alkylimidazolium salts carrying different alkyl chains and different counteranions (Tf2N– or Br–). These block copolymerizations are carried out at 30 °C, either under homogeneous solution in methanol or in a biphasic medium consisting of a mixture of ethyl acetate and water. Unprecedented PIL-b-PIL block copolymers are thus prepared under these conditions. However, anion exchange occurs at the early stage of the growth of the second block. Finally, diblock copolymers generated in the biphasic medium can be readily coupled by addition of isoprene, forming all PIL-based and symmetrical ABA-type triblock copolymers in a one-pot process. Such a direct block copolymerization method, involving vinylimidazolium monomers bearing different alkyl chains, thus opens new opportunities in the precision synthesis of all PIL-based block copolymers of tunable properties. [less ▲]

Detailed reference viewed: 21 (4 ULg)
See detailCO2-sourced non-isocyanate polyurethanes: from the monomer synthesis to the elaboration of polymeric materials
Gennen, Sandro ULg; Grignard, Bruno ULg; Gilbert, Bernard ULg et al

Conference (2015, July 07)

Due to problems related to the rarefaction of fossil resources and the global warming that comes from CO2 emissions, new carbon feedstocks that are abundant, renewable, non-toxic, inexpensive and ... [more ▼]

Due to problems related to the rarefaction of fossil resources and the global warming that comes from CO2 emissions, new carbon feedstocks that are abundant, renewable, non-toxic, inexpensive and environmentally friendly must be explored to produce chemicals. Besides the valorization of bio-based raw materials, the use of CO2 as a C1 carbon source into added-value products has gained interest in both academic and industrial fields. One promising way to valorize CO2 relies on its chemical fixation onto epoxides to produce cyclic carbonates that find applications as electrolytes in lithium ion batteries, as aprotic polar solvents or as useful intermediates for polycarbonates. Cyclic carbonates also react with primary amines to produce 2-hydroxyethylurethane. This reaction can be extrapolated to the synthesis of non-isocyanate polyurethanes (NIPU) by polyaddition of bifunctional cyclic carbonates with diamines.5 This study focusses on (i) the synthesis of cyclic carbonates using new highly efficient organocatalysts and (ii) their valorization as monomers to produce non-isocyanate polyurethanes. First, we have identified a bicomponent organocatalyst for the very fast synthesis of cyclic carbonates from CO2 and epoxides under very mild reaction conditions. Kinetics of reactions were followed by online Raman spectroscopy. NMR titrations were realized to evidence the mechanism of activation of this novel organocatalytic system that will be discussed in detail this talk. The second objective relies on the development of new efficient organocatalysts for the synthesis of high molar masses NIPUs in short reaction times. Organic compounds interacting with the cyclic carbonate by hydrogen bonding were identified and their catalytic activity was highlighted by a model reaction between ethylene carbonate and a primary amine before extrapolation to the synthesis of NIPUs that find applications as coatings or foamed materials. [less ▲]

Detailed reference viewed: 103 (4 ULg)
See detailEfficient hydrogen-bond donor activators for the synthesis of bio-based cyclic carbonates from CO2 and vegetable oils: a combined in-situ FT-IR and DFT study
Alves, Margot ULg; Méreau, Raphaël; Grignard, Bruno ULg et al

Conference (2015, July 06)

The present research aims at developing new very efficient organocatalysts for the chemical fixation of carbon dioxide onto epoxides that are precursors of non-isocyanate polyurethanes (NIPUs). Although ... [more ▼]

The present research aims at developing new very efficient organocatalysts for the chemical fixation of carbon dioxide onto epoxides that are precursors of non-isocyanate polyurethanes (NIPUs). Although this area of research is the subject of many works, the catalytic performance must be further enhanced in particular for the carbonatation of vegetable-based precursors while respecting environmental standards. In this context, we developed a new organocatalytic platform based on the combination of ammonium salts with single or double hydrogen bond donor activators that showed unexpected catalytic activity for the fast addition of CO2 onto epoxidized oils under mild conditions. First of all, in situ kinetic studies of the cycloaddition of CO2 onto model epoxidized oils were monitored by FT-IR spectroscopy in order to evaluate the influence of the hydrogen bond structure and various parameters such as the pressure, the temperature, the catalyst loading, and the nature of the epoxide on the reaction kinetics. Thanks to this catalyst screening, we found that ammonium salt/fluorinated hydrogen bond donors bicomponent organocatalysts were by far more efficient than that proposed in the literature under mild conditions (60°C, 2MPa). Then, the reaction mechanism of the organocatalyzed cycloaddition of propylene oxide onto CO2 was elucidated by performing Density Functional Theory (DFT). Our theoretical results highlighted the key role of the hydrogen bond interaction between the epoxide and the activators for the enhancement of the catalytic platform’s efficiency. [less ▲]

Detailed reference viewed: 59 (3 ULg)