References of "Detrembleur, Christophe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailControlled synthesis of poly(vinylamine)-based copolymers by organometallic-mediated radical polymerization
Dréan, Mathilde ULg; Guégan, Philippe; Detrembleur, Christophe ULg et al

in Macromolecules (in press)

iving/controlled polymerization methods have enabled the synthesis of numerous (co)polymers with defined compositions and architectures. However, the precision design of poly(vinylamine)-based copolymers ... [more ▼]

iving/controlled polymerization methods have enabled the synthesis of numerous (co)polymers with defined compositions and architectures. However, the precision design of poly(vinylamine)-based copolymers remains challenging despite their extensive use in various fields of applications and the clear benefits to finely tune their properties. Here, we report on a two-step strategy for the synthesis of tailor-made poly(vinylamine) derivatives through the organometallic- mediated radical (co)polymerization (OMRP) of N-vinyl- acetamide and/or N-methylvinylacetamide followed by acid hydrolysis of the acetamide groups. A series of well-defined homopolymers as well as statistical and block copolymers with pendant primary and/or secondary amines having controlled molar masses, compositions, and low dispersities were produced accordingly. The reactivity ratios of the comonomers as well as the composition drift along the chain were determined in order to have a precise idea of the polymer structures. These advances represent a significant step toward an efficient platform for synthesis of this important class of amino group-containing (co)polymers. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailTransparent superhydrophobic coatings from amphiphilic-fluorinated block copolymers synthesized by aqueous polymerization-induced self-assembly
Ouhib, Farid ULg; Dirani, Ali; Aqil, Abdelhafid ULg et al

in Polymer Chemistry (in press)

Preparation of transparent and superhydrophobic coatings by co-deposition of an aqueous solution of an amphiphilic fluorinated block copolymer (FBC) with silica particles was developped. Spin- coating of ... [more ▼]

Preparation of transparent and superhydrophobic coatings by co-deposition of an aqueous solution of an amphiphilic fluorinated block copolymer (FBC) with silica particles was developped. Spin- coating of this aqueous solution onto glass followed by an appropriate thermal treatment promotes the self-assembly of the hybrid material with the formation of superhydrophobic, robust and transparent coatings. [less ▲]

Detailed reference viewed: 19 (5 ULg)
Full Text
Peer Reviewed
See detailOne-pot synthesis of double poly(ionic liquid) block copolymers by cobalt-mediated radical polymerization-induced self assembly (CMR-PISA) in water
Cordella, Daniela ULg; Debuigne, Antoine ULg; Jérôme, Christine ULg et al

in Macromolecular Rapid Communications (in press)

Amphiphilic double poly(ionic liquid) (PIL) block copolymers are directly prepared by cobalt- mediated radical polymerization induced self-assembly (CMR-PISA) in water of N-vinyl imida- zolium monomers ... [more ▼]

Amphiphilic double poly(ionic liquid) (PIL) block copolymers are directly prepared by cobalt- mediated radical polymerization induced self-assembly (CMR-PISA) in water of N-vinyl imida- zolium monomers carrying distinct alkyl chains. The cobalt-mediated radical polymerization of N-vinyl-3-ethyl imidazolium bromide (VEtImBr) is first carried out until high conversion in water at 30 °C, using an alkyl bis(acetylacetonate)cobalt(III) adduct as initiator and con- trolling agent. The as-obtained hydrophilic poly(N-vinyl-3- ethyl imidazolium bromide) (PVEtImBr) is then used as a macroinitiator for the CMR-PISA of N-vinyl-3-octyl imidazo- lium bromide (VOcImBr). Self-assembly of the amphiphilic PVEtImBr-b-PVOcImBr block copolymer, i.e., of PIL-b-PIL-type, rapidly takes place in water, forming polymer nanoparticles consisting of a hydrophilic PVEtImBr corona and a hydro- phobic PVOcImBr core. Preliminary investigation into the effect of the size of the hydrophobic block on the dimension of the nanoparticles is also described. [less ▲]

Detailed reference viewed: 53 (16 ULg)
See detailCatalytic transformation of CO2: from monomers to polymers
Alves, Margot ULg; Grignard, Bruno ULg; Boyaval, Amélie ULg et al

Conference (2016, May 24)

Valorising CO2 as a renewable C1 feedstock for producing added value building blocks is the scope of many academic and industrial researches. Carbon dioxide is a thermodynamically and kinetically stable ... [more ▼]

Valorising CO2 as a renewable C1 feedstock for producing added value building blocks is the scope of many academic and industrial researches. Carbon dioxide is a thermodynamically and kinetically stable molecule that can be converted into five membered cyclic carbonates by coupling with epoxides using organometallic complexes or organocatalysts. To date, the identification and development of highly efficient (organo)catalysts under mild experimental conditions still remains challenging. In particular, the synthesis of six membered cyclic carbonates by the CO2/oxetane coupling using such organocatalysts has never been reported to our knowledge. In this context, we developed a new highly efficient bicomponent homogeneous organocatalyst composed of an ammonium salt as the catalyst and fluorinated single or double hydrogen bond donor activators (HBD). First, the efficiency of this new organocatalyst for the fast and selective CO2/epoxide coupling was investigated through detailed kinetic studies by IR spectroscopy under pressure and results were compared with the most efficient organocatalysts reported in the literature. This study was completed by molecular modeling in order to elucidate the reaction mechanism. DFT calculations showed that the hexafluoroisopropanol functionalities of HBDs strengthened the proton donor capability and allowed a better stabilization by hydrogen bonding of the intermediates and transition states. Finally, the use of this dual organocatalyst was extended to the coupling of CO2 with less reactive oxetanes to produce hydroxyl telechelic oligocarbonates. [less ▲]

Detailed reference viewed: 30 (2 ULg)
See detailSynthesis of novel poly(vinylamine)-based copolymers with controlled compositions
Dréan; Guégan, Philippe; Detrembleur, Christophe ULg et al

Poster (2016, May 23)

Metal binding, pH sensitivity and polyelectrolytes complexation are key characteristics of amine-containing polymers. Among them, poly(vinylamine)s presenting high amine densities are particularly useful ... [more ▼]

Metal binding, pH sensitivity and polyelectrolytes complexation are key characteristics of amine-containing polymers. Among them, poly(vinylamine)s presenting high amine densities are particularly useful in many fields such as coatings , water purification and gas membrane separation. The properties of such polymers strongly depend on the nature of the amines and can thus be adjusted by incorporating different types of amines along the backbone. In this perspective, we developed a strategy for synthesizing poly(vinylamine)-based (co)polymers containing primary and secondary amines as well as imidazole moieties in predictable proportions. First, radical (co)polymerizations of N-vinylacetamide, N-methylvinylacetamide and vinylimidazole were performed followed by deprotection of the amine functions via acidic hydrolysis of the pendant amides. We determined the reactivity ratios of each comonomer pairs and developed the corresponding Skeist’s model, allowing the prediction of the copolymer compositions and distributions. Following this straightforward approach, novel amine-containing copolymers with predictable and precise compositions were made available and should contribute in the future to the development of the above-mentioned applications. [less ▲]

Detailed reference viewed: 15 (3 ULg)
See detailPolymers bearing pendant catechols for organic electrode-active materials in lithium-ion batteries
Patil, Nagaraj ULg; Cordella, Daniela ULg; Aqil, Abdelhafid ULg et al

Conference (2016, May 23)

Herein, we describe the synthesis and organometallic-mediated radical polymerization of 1-vinyl-3-alkylimidazolium-type monomers bearing pendant catechols in its protected version, using a presynthesized ... [more ▼]

Herein, we describe the synthesis and organometallic-mediated radical polymerization of 1-vinyl-3-alkylimidazolium-type monomers bearing pendant catechols in its protected version, using a presynthesized alkyl‒cobalt(III) complex as monocomponent initiator/mediating agent in a controlled fashion. A neat post-polymerization deprotection, followed by facile anion exchange reactions afforded a novel multi-functional poly(ionic liquids)-bearing free catechol functionalities. Prototype Lithium-ion battery, consisting a binder- and current collector-free electroactive polymer-supported buckypaper as the composite cathode, delivered an impressive specific capacity in the range of 199–230 mA h g‒1, relatively at high discharge potential = 3.2–3.4 V (vs Li/Li+), as calculated from CV and galvanostatic charge-discharge experiments. The superior electrochemical performance of the composite cathode consisting of PIL-catechols active-material, in comparison with poly(dopaminde acrylamide) is ascribed to the intrinsic Li-ion conductivity and enhanced surface activity of the imidazolium backbone with TFSI counteranion, compared to the acrylamide backbone. [less ▲]

Detailed reference viewed: 27 (4 ULg)
See detailFe2O3 nanoparticle-functionalized N-doped carbon with interconnected, hierarchical porous structures as high-performance electrode for lithium ion batteries
Alkarmo, Walid ULg; Ouhib, Farid ULg; Aqil, Abdelhafid ULg et al

Poster (2016, May 23)

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous ... [more ▼]

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous frameworks have emerged as attractive materials for various electrochemical energy storage/conversion devices, including Li-ion batteries (LIBs), Li−O2 batteries, Li−S batteries, supercapacitors, and fuel cells. A hierarchically structured macro- and mesoporous N-doped carbon with dispersed Fe2O3 nanoparticles (NDC@Fe2O3) is prepared by thermal treatment of a novel composite composed by PMMA particles decorated by graphene oxide (GO), PPy and iron salts. The NDC@Fe2O3 composite exhibited high surface area with a hierarchical pores structure. Integrated as a lithium ion battery anode, NDC@Fe2O3 exhibited high reversible capacity of 930 mA h/g over 200 cycles. The combination of Fe2O3 nanoparticles with porous carbon to form hybrid anode has been an efficient way to maintain the electronic integrity of the whole electrode since the carbon acts as a buffer layer to accommodate the volume variation and to provide multidimensional electron transport pathways during the charge/discharge process. [less ▲]

Detailed reference viewed: 55 (3 ULg)
See detailSynthesis of CO2-sourced hydrogels by using the non-isocyanate polyurethane (NIPU) chemistry
Gennen, Sandro ULg; Grignard, Bruno ULg; Thomassin, Jean-Michel ULg et al

Poster (2016, May 23)

Polyurethane (PUs) is one of the most important polymers and finds applications as elastomers, coatings, adhesives and sealants for automotive or construction. PU is also a material of choice in the ... [more ▼]

Polyurethane (PUs) is one of the most important polymers and finds applications as elastomers, coatings, adhesives and sealants for automotive or construction. PU is also a material of choice in the biomedical domain due to its good biocompatibility, biodegradation and mechanical properties. Especially, PUs hydrogels have been developed in the last years for biomedical applications such as soft contact lenses, wound dressing, drug delivery systems and scaffolds for tissue engineering. Traditionally, PUs are synthesized by a step-growth polymerization between diols and diisocyanates. Because of toxicity issues and a possible interdiction of isocyanates, we focused on developing new PU hydrogels using a non-isocyanate route (Figure 1). The polyurethanes formed by this route are called NIPU (for Non-Isocyanate PolyUrethane). Firstly, chemically cross-linked NIPU gels were synthesized by solvent-free polycondensation between a hydrophilic CO2-sourced polyethyleneglycol bi-cyclic carbonate and a diamine in the presence of a crosslinker. Then, NIPU gels were swelled in water till water equilibrium before characterization of their mechanical properties by compression tests. The influence of the cross-linking ratios (diamine/crosslinker ratio) and diamine structure on the swelling and the compression properties were studied. To reinforce the compression properties of NIPU hydrogel (increase in stress at break, strain at break and compression modulus), a nanofiller was dispersed in the cyclic carbonate/diamine/crosslinker formulation prior to polymerization. For the first time, nanocomposite NIPU hydrogels with high water contents (up to 80%) and good compression properties have been prepared by using low clay content. [less ▲]

Detailed reference viewed: 42 (2 ULg)
See detailCyclic and oligo-carbonates by organocatalytic coupling of CO2 with epoxides or oxetanes
Alves, Margot ULg; Grignard, Bruno ULg; Boyaval, Amélie ULg et al

Conference (2016, April 20)

Valorising CO2 as a renewable C1 feedstock for producing added value building blocks is the scope of many academic and industrial researches. Carbon dioxide is a thermodynamically and kinetically stable ... [more ▼]

Valorising CO2 as a renewable C1 feedstock for producing added value building blocks is the scope of many academic and industrial researches. Carbon dioxide is a thermodynamically and kinetically stable molecule that can be converted into five and six membered cyclic carbonates by coupling with epoxides or oxetanes, respectively, using appropriate catalysts. Although transition metal catalysts are efficient under atmospheric pressure and ambient temperature, most of them are poorly selective, sensitive to hydrolysis and/or oxidation and/or toxic whereas less/non-toxic and eco-friendly organocatalysts such as ionic liquids and halide salts are generally only efficient at very high temperature and pressure favouring their thermal degradation. To overcome these limitations, we developed a new highly efficient bicomponent homogeneous organocatalyst composed of an ammonium salt as the catalyst and fluorinated single or double hydrogen bond donor activators. Through online FTIR kinetic studies, we demonstrated that this new organocatalyst showed unexpected catalytic activity for the fast and selective addition of CO2 onto epoxides under solvent-free and mild experimental conditions. The use of this dual catalyst was then extended to the coupling of CO2 with less reactive oxetanes to produce hydroxyl telechelic oligocarbonates. In the first part of this talk, based on kinetics of reactions followed by online FTIR under pressure, we will describe the reaction conditions required for the organocatalytic coupling of CO2 with epoxides and oxetanes. In the second part, the mechanism of the reaction will be approached and discussed based on DFT calculations. Finally, we will compare and discuss the efficiency of various organocatalytic systems for this type of reaction. [less ▲]

Detailed reference viewed: 29 (3 ULg)
Full Text
Peer Reviewed
See detailDirect one-pot synthesis of poly(ionic liquid) nanogels by cobalt-mediated radical cross-linking copolymerization in organic or aqueous media
Weiss-Maurin, Mathilde ULg; Cordella, Daniela ULg; Jérôme, Christine ULg et al

in Polymer Chemistry (2016), 7(14), 2521-2530

Nanogels of controlled kinetic chain length were synthesized by cobalt-mediated radical cross-linking copolymerization (CMRccP) involving a vinyl monomer and a divinyl cross-linker. This strategy was ... [more ▼]

Nanogels of controlled kinetic chain length were synthesized by cobalt-mediated radical cross-linking copolymerization (CMRccP) involving a vinyl monomer and a divinyl cross-linker. This strategy was first validated to achieve neutral poly(vinyl acetate) nanogels by CMRccP of vinyl acetate and divinyl adipate as cross-linker, at 40 °C, in presence of an alkyl- cobalt(III) serving both as initiator and controlling agent, using ethyl acetate as solvent. Poly(ionic liquid) nanogels were then directly obtained by CMRccP of N-vinyl-3-ethyl imidazolium bromide, in presence of 1,13-divinyl-3-decyl diimidazolium bromide as cross-linker. CMRccP experiments could be conducted either in organic solvent using dimethyl formamide or, more interestingly, in aqueous solution, demonstrating the robustness and the versatility of this one-step process. Chain extensions of PILs nanogels were also carried out in water, forming core-shell structures, thus opening new avenues in the design of functional nanogels. [less ▲]

Detailed reference viewed: 38 (13 ULg)
Full Text
Peer Reviewed
See detailCO2-blown microcellular non-isocyanate polyurethane (NIPU) foams: from bio- and CO2-sourced monomers to potentially thermal insulating materials
Grignard, Bruno ULg; Thomassin, Jean-Michel ULg; Gennen, Sandro ULg et al

in Green Chemistry (2016), 18(7), 2206-2215

Bio- and CO2-sourced non-isocyanate polyurethane (NIPU) microcellular foams were prepared using supercritical carbon dioxide (scCO2) foaming technology. These low-density foams offer low thermal ... [more ▼]

Bio- and CO2-sourced non-isocyanate polyurethane (NIPU) microcellular foams were prepared using supercritical carbon dioxide (scCO2) foaming technology. These low-density foams offer low thermal conductivity and have an impressive potential for use in insulating materials. They constitute attractive alternatives to conventional polyurethane foams. We investigated CO2’s ability to synthesize the cyclic carbonates that are used in the preparation of NIPU by melt step-growth polymerization with a bio-sourced amino-telechelic oligoamide and for NIPU foaming. Our study shows that CO2 is not only sequestered in the material for long-term application, but is also valorized as a blowing agent in the production of NIPU foams. Such foams will contribute to energy conservation and savings by reducing CO2 emissions. [less ▲]

Detailed reference viewed: 101 (22 ULg)
Full Text
Peer Reviewed
See detailNon-isocyanate polyurethanes from carbonated soybean oil Using monomeric or oligomeric diamines To achieve thermosets or thermoplastics
Poussard, Loïc; Mariage, J.; Grignard, Bruno ULg et al

in Macromolecules (2016), 49(6), 2162-2171

Fully bio- and CO2-sourced non-isocyanate polyurethanes (NIPUs) were synthesized by reaction of carbonated soybean oil (CSBO) either with biobased short diamines or amino-telechelic oligoamides derived ... [more ▼]

Fully bio- and CO2-sourced non-isocyanate polyurethanes (NIPUs) were synthesized by reaction of carbonated soybean oil (CSBO) either with biobased short diamines or amino-telechelic oligoamides derived from fatty acids to achieve respectively thermoset or thermoplastic NIPUs. Biobased carbonated vegetable oils were first obtained by metal-free coupling reactions of CO2 with epoxidized soybean oils under supercritical conditions (120 °C, 100 bar) before complete characterization by FTIR, 1H NMR, and electrospray ionization mass spectroscopy (ESI-MS). In a second step, biobased NIPUs were produced by melt-blending of the so-produced cyclocarbonated oil with the biobased aminated derivatives. The thermal and mechanical properties of resulting polymers were found to be depending on the cyclocarbonated vegetable oil/amine ratio. More precisely, short diamines and CSBO led to the formation of cross-linked NIPUs, and the resulting tensile and thermal properties were poor. In contrast, elastomeric NIPUs derived from oligoamides and CSBO exhibited a better rigidity, an improved elongation at break (εr up to 400%), and a higher thermal stability (T95 wt% > 350 °C) than those of starting oligoamides. These results are impressive and highlight the potentiality of this environmental friendly approach to prepare renewable NIPU materials of high performances. [less ▲]

Detailed reference viewed: 55 (13 ULg)
Full Text
Peer Reviewed
See detailCobalt-mediated radical polymerization of vinyl acetate and acrylonitrile in supercritical carbon dioxide
Kermagoret; Chau, Ngoc Do Quyen; Grignard, Bruno ULg et al

in Macromolecular Rapid Communications (2016), 39(6), 539-544

Cobalt-mediated radical polymerization (CMRP) of vinyl acetate (VAc) is successfully achieved in supercritical carbon dioxide (scCO 2 ). CMRP of VAc is conducted using an alkyl-cobalt(III) adduct that is ... [more ▼]

Cobalt-mediated radical polymerization (CMRP) of vinyl acetate (VAc) is successfully achieved in supercritical carbon dioxide (scCO 2 ). CMRP of VAc is conducted using an alkyl-cobalt(III) adduct that is soluble in scCO2 . Kinetics studies coupled to visual observations of the polymerization medium highlight that the melt viscosity and PVAc molar mass ( Mn ) are key parameters that affect the CMRP in scCO2. It is noticed that CMRP is controlled for M n up to 10 000 g mol−1 , but loss of control is progressively observed for higher molar masses when PVAc precipitates in the polymerization medium. Low molar mass PVAc macroinitiator, prepared by CMRP in scCO2 , is then successfully used to initiate the acrylonitrile polymerization. PVAc-b-PAN block copolymer is collected as a free flowing powder at the end of the process although the dispersity of the copolymer increases with the reaction time. Although optimization is required to decrease the dispersity of the polymer formed, this CMRP process opens new perspectives for macromolecular engineering in scCO2 without the utilization of fluorinated comonomers or organic solvents. [less ▲]

Detailed reference viewed: 67 (13 ULg)
Full Text
Peer Reviewed
See detailProcessing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb
Bollen, Pierre; Quievy, Nicolas; Detrembleur, Christophe ULg et al

in Materials & Design (2016), 89

A multifunctional hybrid material class in the form of a sandwich panel has been developed towards the com- bined optimization of mechanical and electromagnetic absorption performance. The faces of the ... [more ▼]

A multifunctional hybrid material class in the form of a sandwich panel has been developed towards the com- bined optimization of mechanical and electromagnetic absorption performance. The faces of the panel are made of glass fibre reinforced epoxy composites and the core is made of carbon nanotube reinforced polymer foam filling a metallic honeycomb. The different processing strategies and options tested to fabricate the core material are described aswell as the associated scientific and technological issues. The most efficient processing route is by foaming the nanocomposite with a chemical foaming agent directly inside the honeycomb. This route offers a good surface finish and the operation can be achieved in one step. But, in order to produce large panels with a semi-continuous process, thermo-mechanical insertion of the foamed nanocomposite with supercritical CO2 can be more suitable. The characterization of the electromagnetic absorption of the panels produced by dif- ferent routes shows that the performance is not much sensitive to processing defects making possible upscaling to mass production. [less ▲]

Detailed reference viewed: 45 (4 ULg)
Full Text
Peer Reviewed
See detailA comprehensive density functional theory study of the key role of fluorination and dual hydrogen bonding in the activation of the epoxide/CO2 coupling by fluorinated alcohols
Alves, Margot ULg; Méreau, Raphaël; Grignard, Bruno ULg et al

in RSC Advances (2016), 6(43), 36327-36335

The activation mechanism of the CO2/propylene oxide coupling catalysed by a bicomponent organocatalyst combining the use of TBABr with (multi)phenolic or fluorinated hydrogen bond donors (HBDs) was ... [more ▼]

The activation mechanism of the CO2/propylene oxide coupling catalysed by a bicomponent organocatalyst combining the use of TBABr with (multi)phenolic or fluorinated hydrogen bond donors (HBDs) was investigated using the Density Functional Theory (DFT). Thus, it was shown that increasing the number of electron withdrawing trifluoromethyl substituents in HBDs strengthens their proton donor capability and allows a better stabilization by hydrogen bonding of the intermediates and transition states. In addition, the high efficiency of fluorinated monoalcohol activators is related to a dual hydrogen bonding mechanism by two fluorinated molecules that cooperatively contribute to the CO2/propylene oxide coupling. [less ▲]

Detailed reference viewed: 26 (9 ULg)
Full Text
Peer Reviewed
See detailFast Atmospheric Plasma Deposition of Bio-Inspired Catechol/Quinone-Rich Nanolayers to Immobilize NDM-1 Enzymes for Water Treatment
Mauchauffé, Rodolphe; Bonot, Sébastien; Moreno-Couranjou, Maryline et al

in Advanced Materials Interfaces (2016), 3(8), 101002

Detailed reference viewed: 19 (2 ULg)
See detailNovel organocobalt based on acetylacetonate ligands for the precision synthesis of telechelic polymers
Demarteau, Jérémy ULg; Cordella, Daniela ULg; Kermagoret, Anthony et al

Conference (2015, December 17)

Organocobalt(III) with acetylacetonate ligands is the most representative example of R-Co bearing a weak C-Co bond that can release alkyl radicals under mild experimental conditions without requiring a ... [more ▼]

Organocobalt(III) with acetylacetonate ligands is the most representative example of R-Co bearing a weak C-Co bond that can release alkyl radicals under mild experimental conditions without requiring a photoactivation. The unique isolated specimen is a short oligo(vinyl acetate) end-capped by Co(acac)2. The high lability of the C-Co bond of this R-Co combined to the unique capacity of Co(acac)2 to reversibly trap alkyl radicals make this organocobalt unique for the precision synthesis of unprecedented polymers by the so-called Cobalt-Mediated Radical Polymerization (CMRP) technique. The growth of unstabilized and highly reactive growing radicals formed by the addition of R· to unconjugated olefins (vinyl esters, vinyl amides, vinyl imidazolium, vinyl chloride, ethylene) is controlled by the reversible formation of a weak C-Co bond at the polymer chain end. The lack of alternatives to this R-Co, especially to the structure of the alkyl group, has placed limitations on further innovation in (macro)molecular design. Other functional variants that would enable attractive chain-end derivatizations are unfortunately not available. In this communication, we will address this important challenge by describing an innovative synthetic route towards the preparation of a new functional R-Co(acac)2 that are characterized by a weak C-Co bond. We will report the conditions required for initiating and controlling the radical polymerization of various monomers from these R-Co. We will also demonstrate their utility for the production of novel telechelic polymers under mild experimental conditions, syntheses that can be carried out in water. [less ▲]

Detailed reference viewed: 37 (8 ULg)
Full Text
Peer Reviewed
See detailExperimental and computational micro–mechanical investigations of compressive properties of polypropylene/multi–walled carbon nanotubes nanocomposite foams
Wan, Fangyi; Tran, Minh Phuong; Leblanc, Christophe ULg et al

in Mechanics of Materials (2015), 91(Part 1), 95-118

The compressive behavior of nanocomposite foams is studied by both experimental and computational micro-mechanics approaches with the aim of providing an efficient computational model for this kind of ... [more ▼]

The compressive behavior of nanocomposite foams is studied by both experimental and computational micro-mechanics approaches with the aim of providing an efficient computational model for this kind of material. The nanocomposites based on polypropylene (PP) and different contents of multi-walled carbon nanotubes (CNTs) are prepared by melt mixing method. The nanocomposite samples are foamed using super-critical carbon dioxide (ScCO2) as blowing agent at different soaking temperatures. The influence of this foaming parameter on the morphological characteristics of the foam micro-structure is discussed. Differential Scanning Calorimetry (DSC) measurements are used to quantify the crystallinity degree of both nanocomposites and foams showing that the crystallinity degree is reduced after the foaming process. This modification leads to mechanical properties of the foam cell walls that are different from the raw nanocomposite PP/CNTs material. Three--point bending tests are performed on the latter to measure the flexural modulus in terms of the crystallinity degree. Uniaxial compression tests are then performed on the foamed samples under quasi-static conditions in order to extract the macro-scale compressive response. Next, a two-level multi-scale approach is developed to model the behavior of the foamed nanocomposite material. On the one hand, the micro-mechanical properties of nanocomposite PP/CNTs cell walls are evaluated from a theoretical homogenization model accounting for the micro-structure of the semi-crystalline PP, for the degree of crystallinity, and for the CNT volume fraction. The applicability of this theoretical model is demonstrated via the comparison with experimental data from the described experimental measurements and from literature. On the other hand, the macroscopic behavior of the foamed material is evaluated using a computational micro-mechanics model using tetrakaidecahedron unit cells and periodic boundary conditions to estimate the homogenized properties. The unit cell is combined with several geometrical imperfections in order to capture the elastic collapse of the foamed material. The numerical results are compared to the experimental measurements and it is shown that the proposed unit cell computational micro-mechanics model can be used to estimate the homogenized behavior, including the linear and plateau regimes, of nanocomposite foams. [less ▲]

Detailed reference viewed: 206 (67 ULg)