References of "Derouaux, Adeline"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCrystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli
Sauvage, Eric; Derouaux, Adeline ULg; Fraipont, Claudine ULg et al

in PLoS ONE (2014)

In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is ... [more ▼]

In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is mainly periplasmic, with a 23 residues cytoplasmic tail and a single transmembrane helix. We have solved the crystal structure of a soluble form of PBP3 (PBP357-577) at 2.5 Å revealing the two modules of high molecular weight class B PBPs, a carboxy terminal module exhibiting transpeptidase activity and an amino terminal module with unknown function. To gain additional insight, the PBP3 Val88-Ser165 subdomain (PBP388-165), for which the electron density is poorly defined in the PBP3 crystal, was produced and its structure solved by SAD phasing at 2.1 Å. The structure shows a three dimensional domain swapping with a β-strand of one molecule inserted between two strands of the paired molecule, suggesting a possible role in PBP357-577 dimerization. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Peer Reviewed
See detailBacterial cell wall growth, shape and division.
Derouaux, Adeline ULg; Terrak, Mohammed ULg; Den Blaauwen, Tanneke et al

in Bacterial Membranes: Structural and Molecular Biology (2013)

Detailed reference viewed: 12 (3 ULg)
Full Text
Peer Reviewed
See detailPeptidoglycan glycosyltransferase substrate mimics as templates for the design of new antibacterial drugs.
Derouaux, Adeline ULg; Sauvage, Eric ULg; Terrak, Mohammed ULg

in Frontiers in immunology (2013), 4

Peptidoglycan (PG) is an essential net-like macromolecule that surrounds bacteria, gives them their shape, and protects them against their own high osmotic pressure. PG synthesis inhibition leads to ... [more ▼]

Peptidoglycan (PG) is an essential net-like macromolecule that surrounds bacteria, gives them their shape, and protects them against their own high osmotic pressure. PG synthesis inhibition leads to bacterial cell lysis, making it an important target for many antibiotics. The final two reactions in PG synthesis are performed by penicillin-binding proteins (PBPs). Their glycosyltransferase (GT) activity uses the lipid II precursor to synthesize glycan chains and their transpeptidase (TP) activity catalyzes the cross-linking of two glycan chains via the peptide side chains. Inhibition of either of these two reactions leads to bacterial cell death. beta-lactam antibiotics target the transpeptidation reaction while antibiotic therapy based on inhibition of the GTs remains to be developed. Ongoing research is trying to fill this gap by studying the interactions of GTs with inhibitors and substrate mimics and utilizing the latter as templates for the design of new antibiotics. In this review we present an updated overview on the GTs and describe the structure-activity relationship of recently developed synthetic ligands. [less ▲]

Detailed reference viewed: 13 (4 ULg)
Full Text
Peer Reviewed
See detailSynthesis of Modified Peptidoglycan Precursor Analogues for the Inhibition of Glycosyltransferase.
Dumbre, S; Derouaux, Adeline ULg; Lescrinier, E et al

in Journal of the American Chemical Society (2012)

The peptidoglycan glycosyltransferases (GTs) are essential enzymes that catalyze the polymerization of glycan chains of the bacterial cell wall from lipid II and thus constitute a validated antibacterial ... [more ▼]

The peptidoglycan glycosyltransferases (GTs) are essential enzymes that catalyze the polymerization of glycan chains of the bacterial cell wall from lipid II and thus constitute a validated antibacterial target. Their enzymatic cavity is composed of a donor site for the growing glycan chain (where the inhibitor moenomycin binds) and an acceptor site for lipid II substrate. In order to find lead inhibitors able to fill this large active site, we have synthesized a series of substrate analogues of lipid I and lipid II with variations in the lipid, the pyrophosphate, and the peptide moieties and evaluated their biological effect on the GT activity of E. coli PBP1b and their antibacterial potential. We found several compounds able to inhibit the GT activity in vitro and cause growth defect in Bacillus subtilis . The more active was C16-phosphoglycerate-MurNAc-(l-Ala-d-Glu)-GlcNAc, which also showed antibacterial activity. These molecules are promising leads for the design of new antibacterial GT inhibitors. [less ▲]

Detailed reference viewed: 18 (5 ULg)
See detailTowards the understanding of the structure and assembly of the E. coli septum
Derouaux, Adeline ULg; Vollmer, Waldemar

Poster (2011, June)

Detailed reference viewed: 7 (3 ULg)
See detailTowards the understanding of the structure and assembly of the E. coli septum
Derouaux, Adeline ULg; Vollmer, Waldemar

Conference (2011, June)

Detailed reference viewed: 4 (1 ULg)
Full Text
Peer Reviewed
See detailSmall molecule inhibitors of peptidoglycan synthesis targeting the lipid II precursor.
Derouaux, Adeline ULg; Turk, Samo; Olrichs, Nick K et al

in Biochemical Pharmacology (2011), 81(9), 1098-105

Bacterial peptidoglycan glycosyltransferases (GTs) of family 51 catalyze the polymerization of the lipid II precursor into linear peptidoglycan strands. This activity is essential to bacteria and ... [more ▼]

Bacterial peptidoglycan glycosyltransferases (GTs) of family 51 catalyze the polymerization of the lipid II precursor into linear peptidoglycan strands. This activity is essential to bacteria and represents a validated target for the development of new antibacterials. Application of structure-based virtual screening to the National Cancer Institute library using eHits program and the structure of the glycosyltransferase domain of the Staphylococcus aureus penicillin-binding protein 2 resulted in the identification of two small molecules analogues 5, a 2-[1-[(2-chlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine and 5b, a 2-[1-[(3,4-dichlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine that exhibit antibacterial activity against several Gram-positive bacteria but were less active on Gram-negative bacteria. The two compounds inhibit the activity of five GTs in the micromolar range. Investigation of the mechanism of action shows that the compounds specifically target peptidoglycan synthesis. Unexpectedly, despite the fact that the compounds were predicted to bind to the GT active site, compound 5b was found to interact with the lipid II substrate via the pyrophosphate motif. In addition, this compound showed a negatively charged phospholipid-dependent membrane depolarization and disruption activity. These small molecules are promising leads for the development of more active and specific compounds to target the essential GT step in cell wall synthesis. [less ▲]

Detailed reference viewed: 65 (15 ULg)
Full Text
Peer Reviewed
See detailOptimization of conditions for the glycosyltransferase activity of penicillin-binding protein 1a from Thermotoga maritima.
Offant, Julien; Terrak, Mohammed ULg; Derouaux, Adeline ULg et al

in FEBS Journal (2010), 277(20), 4290-8

Cell wall biosynthesis is a key target for antibacterial drugs. The major constituent of the bacterial wall, peptidoglycan, is a netlike polymer responsible for the size and shape of the cell and for ... [more ▼]

Cell wall biosynthesis is a key target for antibacterial drugs. The major constituent of the bacterial wall, peptidoglycan, is a netlike polymer responsible for the size and shape of the cell and for resisting osmotic pressure. It consists of glycan chains of repeating disaccharide units cross-linked through short peptide chains. Peptidoglycan assembly is catalyzed by the periplasmic domain of bifunctional class A penicillin-binding proteins. Cross-linking of the peptide chains is catalyzed by their transpeptidase module, which can be inhibited by the most widely used antibiotics, the beta-lactams. In contrast, no drug in clinical use inhibits the polymerization of the glycan chains, catalyzed by their glycosyltransferase module, although it is an obvious target. We report here the purification of the ectodomain of the class A penicillin-binding protein 1a from Thermotoga maritima (Tm-1a*), expressed recombinantly in Escherichia coli. A detergent screen showed that detergents with shorter aliphatic chains were better solubilizers. Cyclohexyl-hexyl-beta-D-maltoside-purified Tm-1a* was found to be monomeric and to have improved thermal stability. A miniaturized, multiwell continuous fluorescence assay of the glycosyltransferase activity was used to screen for optimal reaction conditions. Tm-1a* was active as a glycosyltransferase, catalyzing the formation of glycan chains up to 16 disaccharide units long. Our results emphasize the importance of the detergent in preparing a stable monomeric ectodomain of a class A penicillin-binding protein. Our assay could be used to screen collections of compounds for inhibitors of peptidoglycan glycosyltransferases that could serve as the basis for the development of novel antibiotics. [less ▲]

Detailed reference viewed: 20 (13 ULg)
See detailIdentification and characterization of novel peptidoglycan glycosyltransferase inhibitors with antibacterial activity
Derouaux, Adeline ULg; Turk, Samo; Offant, Julien et al

Poster (2009, November)

Detailed reference viewed: 24 (3 ULg)
Full Text
Peer Reviewed
See detailThe Monofunctional Glycosyltransferase of Escherichia Coli Localizes to the Cell Division Site and Interacts with Penicillin-Binding Protein 3, FtsW, and FtsN
Derouaux, Adeline ULg; Wolf, Benoît ULg; Fraipont, Claudine ULg et al

in Journal of Bacteriology (2008), 190(5), 1831-4

The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells ... [more ▼]

The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells that are deficient in PBP1b and produce a thermosensitive PBP1a and is able to interact with three constituents of the divisome, PBP3, FtsW, and FtsN, suggesting that MtgA may play a role in peptidoglycan assembly during the cell cycle in collaboration with other proteins. [less ▲]

Detailed reference viewed: 36 (10 ULg)
Full Text
Peer Reviewed
See detailImportance of the conserved residues in the peptidoglycan glycosyltransferase module of the class A penicillin-binding protein 1b of Escherichia coli.
Terrak, Mohammed ULg; Sauvage, Eric ULg; Derouaux, Adeline ULg et al

in Journal of Biological Chemistry (2008), 283(42), 28464-70

The peptidoglycan glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs catalyze glycan chain elongation of the bacterial cell wall. These enzymes belong to ... [more ▼]

The peptidoglycan glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs catalyze glycan chain elongation of the bacterial cell wall. These enzymes belong to the GT51 family, are characterized by five conserved motifs, and have some fold similarity with the phage lambda lysozyme. In this work, we have systematically modified all the conserved amino acid residues of the GT module of Escherichia coli class A PBP1b by site-directed mutagenesis and determined their importance for the in vivo and in vitro activity and the thermostability of the protein. To get an insight into the GT active site of this paradigm enzyme, a model of PBP1b GT domain was constructed based on the available crystal structures (PDB codes 2OLV and 2OLU). The data show that in addition to the essential glutamate residues Glu233 of motif 1 and Glu290 of motif 3, the residues Phe237 and His240 of motif 1 and Gly264, Thr267, Gln271, and Lys274 of motif 2, all located in the catalytic cavity of the GT domain, are essential for the in vitro enzymatic activity of the PBP1b and for its in vivo functioning. Thus, the first three conserved motifs contain most of the residues that are required for the GT activity of the PBP1b. The residues Asp234, Phe237, His240, Thr267, and Gln271 are proposed to maintain the structure of the active site and the positioning of the catalytic Glu233. [less ▲]

Detailed reference viewed: 75 (13 ULg)
Full Text
Peer Reviewed
See detailFrom dormant to germinating spores of Streptomyces coelicolor A3(2): new perspectives from the crp null mutant.
Piette, André ULg; Derouaux, Adeline ULg; Gerkens, Pascal et al

in Journal of Proteome Research (2005), 4(5), 1699-708

The complete understanding of the morphological differentiation of streptomycetes is an ambitious challenge as diverse sensors and pathways sensitive to various environmental stimuli control the process ... [more ▼]

The complete understanding of the morphological differentiation of streptomycetes is an ambitious challenge as diverse sensors and pathways sensitive to various environmental stimuli control the process. Germination occupies a particular position in the life cycle as the good achievement of the process depends on events occurring both during the preceding sporulation and during germination per se. The cyclic AMP receptor protein (crp) null mutant of Streptomyces coelicolor, affected in both sporulation and germination, was therefore presented as a privileged candidate to highlight new proteins involved in the shift from dormant to germinating spores. Our multidisciplinary approach-combining in vivo data, the analysis of spores morphological properties, and a proteome study-has shown that Crp is a central regulatory protein of the life cycle in S. coelicolor; and has identified spores proteins with statistically significant increased or decreased expression that should be listed as priority targets for further investigations on proteins that trigger both ends of the life cycle. [less ▲]

Detailed reference viewed: 65 (5 ULg)
Full Text
Peer Reviewed
See detailCrp of Streptomyces Coelicolor Is the Third Transcription Factor of the Large Crp-Fnr Superfamily Able to Bind Camp
Derouaux, Adeline ULg; Dehareng, Dominique ULg; Lecocq, Elke et al

in Biochemical and Biophysical Research Communications (2004), 325(3), 983-90

The chromosomal inactivation of the unique transcription factor of Streptomyces coelicolor that displays a cyclic-nucleotide-binding domain, Crp(Sco), led to a germination-defective phenotype similar to ... [more ▼]

The chromosomal inactivation of the unique transcription factor of Streptomyces coelicolor that displays a cyclic-nucleotide-binding domain, Crp(Sco), led to a germination-defective phenotype similar to the mutant of the adenylate cyclase gene (cya) unable to produce cAMP. By means of cAMP affinity chromatography we demonstrate the specific cAMP-binding ability of Crp(Sco), which definitely demonstrate that a Cya/cAMP/Crp system is used to trigger germination in S. coelicolor. However, electromobility shift assays with the purified Crp(Sco)-cAMP complex and the CRP-like cis-acting element of its own promoter failed. Moreover, we were unable to complement an Escherichia coli crp mutant in trans with Crp(Sco). The fact that Vfr from Pseudomonas aeruginosa and GlxR from Corynebacterium glutamicum could complement such an E. coli mutant suggests that the way Crp(Sco) interacts with DNA should mechanistically differ from its most similar members. This hypothesis was further supported by homology modelling of Crp(Sco) that confirmed an unusual organisation of the DNA-binding domain compared to the situation observed in Crp(Eco). [less ▲]

Detailed reference viewed: 99 (17 ULg)
Full Text
Peer Reviewed
See detailDeletion of a cyclic AMP receptor protein homologue diminishes germination and affects morphological development of Streptomyces coelicolor
Derouaux, Adeline ULg; Halici, S.; Nothaft, H. et al

in Journal of Bacteriology (2004), 186(6), 1893-1897

Open reading frame SCO3571 of Streptomyces coelicolor encodes a protein of the cyclic AMP (cAMP) receptor protein (CRP) superfamily of regulatory proteins. A mutant revealed a dramatic defect in ... [more ▼]

Open reading frame SCO3571 of Streptomyces coelicolor encodes a protein of the cyclic AMP (cAMP) receptor protein (CRP) superfamily of regulatory proteins. A mutant revealed a dramatic defect in germination, followed by growth delay and earlier sporulation. This phenotype correlates with those of an adenylate cyclase (cya) mutant that cannot synthesize cAMP. This finding suggests that S. coelicolor may use a Cya-cAMP-CRP system to trigger complex physiological processes such as morphogenesis. [less ▲]

Detailed reference viewed: 15 (3 ULg)
See detailRôle pléiotrope de la protéine CRP chez Streptomyces coelicolor
Derouaux, Adeline ULg; Titgemeyer, Fritz; Dusart, Jean et al

Conference (2004)

Detailed reference viewed: 7 (1 ULg)
See detailStudy of the cap-like gene of Streptomyces coelicolor
Derouaux, Adeline ULg; Titgemeyrer, Fritz; Dusart, Jean et al

Poster (2003)

Detailed reference viewed: 3 (0 ULg)
See detailStudy of the crp-like gene of Streptomyces coelicolor
Derouaux, Adeline ULg; Titgemeyer, Fritz; Dusart, Jean et al

Poster (2003)

Detailed reference viewed: 5 (0 ULg)
Full Text
Peer Reviewed
See detailSubdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies
Rigali, Sébastien ULg; Derouaux, Adeline ULg; Giannotta, F. et al

in Journal of Biological Chemistry (2002), 277(15), 12507-12515

Haydon and Guest (Haydon, D. J, and Guest, J. R. (1991) FEMS Microbiol Lett. 63, 291-295) first described the helix-turn-helix GntR family of bacterial regulators. They presented them as transcription ... [more ▼]

Haydon and Guest (Haydon, D. J, and Guest, J. R. (1991) FEMS Microbiol Lett. 63, 291-295) first described the helix-turn-helix GntR family of bacterial regulators. They presented them as transcription factors sharing a similar N-terminal DNA-binding (D-b) domain, but they observed near-maximal divergence in the C-terminal effector-binding and oligomerization (E-b/O) domain. To elucidate this C-terminal heterogeneity, structural, phylogenetic, and functional analyses were performed on a family that now comprises about 270 members. Our comparative study first focused on the C-terminal E-b/O domains and next on DNA-binding domains and palindromic operator sequences, has classified the GntR members into four subfamilies that we called FadR, HutC, MocR, and YtrA. Among these subfamilies a degree of similarity of about 55% was observed throughout the entire sequence. Structure/function associations were highlighted although they were not absolutely stringent. The consensus sequences deduced for the DNA-binding domain were slightly different for each subfamily, suggesting that fusion between the D-b and E-b/O domains have occurred separately, with each subfamily having its own D-b domain ancestor. Moreover, the compilation of the known or predicted palindromic cis-acting elements has highlighted different operator sequences according to our subfamily subdivision. The observed C-terminal E-b/O domain heterogeneity was therefore reflected on the DNA-binding domain and on the cis-acting elements, suggesting the existence of a tight link between the three regions involved in the regulating process. [less ▲]

Detailed reference viewed: 12 (0 ULg)